

# REMEDIATION PROGRESS REPORT SECOND QUARTER 2010

DEFENSE FUEL SUPPORT POINT NORWALK NORWALK, CALIFORNIA

### Prepared for:

### Kinder Morgan Energy Partners, L. P.

1100 Town and Country Road Orange, California 92868

### Prepared by:

### **AMEC Geomatrix, Inc.**

510 Superior Avenue, Suite 200 Newport Beach, California 92663 (949) 642-0245

July 15, 2010

Project No. 1603.044



REMEDIATION PROGRESS REPORT – SECOND QUARTER 2010 DEFENSE FUEL SUPPORT POINT, NORWALK NORWALK, CALIFORNIA

July 15, 2010 Project No. 1603.044

This report was prepared by the staff of AMEC Geomatrix under the supervision of the Engineer and/or Geologist whose signature appears hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, after being prepared in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.



Shiow-Whei Chou, PE, #C66044

Senior Engineer

Alex Padilla Staff Engineer



### **TABLE OF CONTENTS**

|                                                         |                                                                                                                                                                                                                                                                                                            | Page |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.0 INTI                                                | RODUCTION                                                                                                                                                                                                                                                                                                  | 1    |
| 2.0 REN                                                 | MEDIATION SYSTEMS                                                                                                                                                                                                                                                                                          | 1    |
| 3.0 OPE                                                 | ERATIONS AND MAINTENANCE                                                                                                                                                                                                                                                                                   | 2    |
| 4.0 SUN                                                 | MMARY OF REMEDIATION PROGRESS                                                                                                                                                                                                                                                                              | 5    |
| 5.0 SYS                                                 | STEM EVALUATION AND OPTIMIZATION                                                                                                                                                                                                                                                                           | 6    |
| 6.0 PLA                                                 | NNED THIRD QUARTER 2010 ACTIVITIES                                                                                                                                                                                                                                                                         | 7    |
| 7.0 REF                                                 | FERENCES                                                                                                                                                                                                                                                                                                   | 8    |
|                                                         |                                                                                                                                                                                                                                                                                                            |      |
|                                                         | TABLES                                                                                                                                                                                                                                                                                                     |      |
| Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 | Remediation Well Construction and Status Vapor Remediation System Operation Summary Groundwater Remediation System Operation Summary Extracted Vapor Analytical Results Extracted Groundwater Analytical Results Remediation Well Vapor Concentrations Groundwater and Product Measurements and Elevations |      |
|                                                         | FIGURES                                                                                                                                                                                                                                                                                                    |      |
| Figure 1<br>Figure 2                                    | Site Location Map<br>Remediation System Layout                                                                                                                                                                                                                                                             |      |
|                                                         | APPENDICES                                                                                                                                                                                                                                                                                                 |      |
| Appendix A                                              | Laboratory Analytical Reports                                                                                                                                                                                                                                                                              |      |
|                                                         |                                                                                                                                                                                                                                                                                                            |      |



## REMEDIATION PROGRESS REPORT SECOND QUARTER 2010 SFPP, L.P.

Defense Fuel Support Point Norwalk Norwalk, California

#### 1.0 INTRODUCTION

AMEC Geomatrix, Inc. (AMEC), has prepared this report on behalf of SFPP, L.P. (SFPP), an operating partnership of Kinder Morgan Energy Partners, L.P. (KMEP), to summarize remediation activities performed at the Defense Fuel Support Point, Norwalk (DFSP) located at 15306 Norwalk Boulevard, Norwalk, California (the site; Figure 1) during the second quarter 2010 reporting period. This progress report is submitted pursuant to a request from the California Regional Water Quality Control Board – Los Angeles Region (RWQCB) in its letter dated October 25, 2006 (RWQCB, 2006) and in accordance with the Second Addendum to the Remedial Action Plan (Second Addendum) dated November 30, 2006 (Geomatrix Consultants, Inc. [Geomatrix], 2006). Implementation of the Second Addendum was approved by the RWQCB on April 2, 2007. Additional background information can be found in the Second Addendum and in previously submitted semi-annual groundwater monitoring reports for the site.

This report summarizes the remediation systems present at the site and describes implementation of the Second Addendum for the period April through June 2010 with documentation of the following tasks:

- operations and maintenance (O&M) of remediation systems performed by SFPP field personnel; and
- remediation system evaluation.

The remediation activities performed during April through June 2010 and the progress achieved through those activities are summarized in the following sections.

#### 2.0 REMEDIATION SYSTEMS

SFPP currently operates remediation systems consisting of soil vapor extraction (SVE), total fluids extraction (TFE; extraction of free product and/or groundwater using a top-loading pump), groundwater extraction (GWE; extraction of groundwater using a bottom-loading pump), and treatment of extracted soil vapors and groundwater to address two specific areas at and near the site: the south-central area and the southeastern area. Operation of the West



Side Barrier groundwater extraction system (WSB system) for remediation of the western offsite area was discontinued in August 2008. During second quarter 2010, two WSB wells were temporarily operated to control the selenium concentration in extracted groundwater as discussed in the Selenium Management Evaluation Update submitted to the RWQCB on June 10, 2010.

Remediation in the south-central and southeastern areas consists of SVE and TFE (GWE is also performed at two well locations in the south-central area). At several well locations, SVE is coupled with TFE (or GWE at two locations) in a process referred to as dual-phase extraction (DPE). SVE is performed using a blower to remove soil vapors from the south-central and southeastern areas. The extracted vapors are conveyed to a knock-out tank that separates entrained moisture from the soil vapors. Accumulated moisture in the knock-out tank is treated by the main groundwater treatment system described below. The soil vapors are then pre-heated in a heat exchanger and treated in a catalytic oxidizer where volatile organic compounds (VOCs) are converted to carbon dioxide and water prior to being discharged to the atmosphere. Operation of the SVE and treatment system is conducted in accordance with Permit to Operate No. F13759 issued by the South Coast Air Quality Management District (SCAQMD).

The main groundwater treatment system handles free product and groundwater recovered from the south-central and southeastern parts of the site. Free product and groundwater recovered by pneumatically-operated top-loading total fluids pumps and bottom-loading groundwater pumps are piped to an oil/water separator. Free product, if any, from the oil/water separator is collected in a storage tank and recycled at an off-site location. Water from the oil/water separator is treated using liquid-phase granular activated carbon (GAC). Treated water is routed through an on-site 8,000-gallon effluent storage tank prior to discharge under a National Pollutant Discharge Elimination System (NPDES) permit (NPDES No. CA0063509, CI No. 7497).

A summary of remediation wells in the south-central, southeastern, and West Side Barrier areas is presented in Table 1. Table 1 includes well identifications, well construction details, well use, and operational status at the end of the second quarter 2010. As discussed in the next section, certain TFE and GWE wells in the south-central area were shut down due to elevated selenium concentrations detected in extracted groundwater.

#### 3.0 OPERATIONS AND MAINTENANCE

Tasks performed for operation and maintenance of the remediation systems during the reporting period included:



- weekly maintenance and monitoring of the south-central and southeastern SVE, TFE/GWE, and soil vapor and groundwater treatment systems (collectively referred to as remediation systems);
- inspection of groundwater extraction pumps;
- measurements of individual well vapor concentrations;
- collection and analysis of system influent vapor and groundwater samples; and
- gauging of selected remediation wells.

During the reporting period, remediation system inspections were performed on a weekly basis and vapor flow rate, vacuum, volumes of extracted groundwater, hours of operation, and other system parameters were recorded on an approximately weekly basis during system operation. Remediation system operation activities for the second quarter 2010 are summarized in Tables 2 and 3. The remediation systems operated during second quarter 2010 with the following exceptions.

- The TFE/GWE system shut down on multiple occasions due to high level alarms for the transfer tank. Corrective actions taken included installing a new bag filter housing on April 29, 2010 and new water conveyance piping to bypass the air stripper to improve the flow of water through the TFE/GWE system. Further troubleshooting on May 12, 2010 showed that the high level switch for the transfer tank was malfunctioning and the switch was replaced on May 14, 2010.
- The remediation systems shut down on multiple occasions due to main breaker trips. An electrical contractor began investigating the circuit breakers on April 16, 2010. On June 14, 2010 a generator was installed at the site to power the remediation systems after breaker trips continued to shut down the systems. The generator was temporarily shut down between June 20 and June 22, 2010 due to a fuel leak at the generator. The generator will continue to power the remediation systems until the electrical issues are resolved.
- The TFE/GWE system was shut down on April 29, 2010 for pump repairs at multiple TFE/GWE wells and restarted on May 3, 2010.
- The SVE system was shut down on May 21, 2010 and the TFE/GWE system
  was shut down on May 25, 2010 to facilitate groundwater gauging in several
  extraction wells as a part of the semi-annual groundwater monitoring event.
  Both systems were restarted on June 1, 2010.
- The TFE/GWE system was shut down during June 11, 2010 to June 15, 2010 to evaluate selenium concentrations in the extraction wells. During this shutdown period, groundwater samples were collected from TFE and GWE wells and analyzed for selenium. Based on the results of these analyses, the following wells were selected for pumping when the system was restarted on



June 15, 2010: MW-SF-14, GMW-O-11, GMW-O-15, GMW-O-18, and GMW-36. These wells were selected because their aggregate selenium concentration was expected to meet the discharge limits for selenium specified in the NPDES permit noted above (4.1 micrograms per liter [µg/L]). During the shutdown period, additional repairs and enhancements were made to the TFE/GWE system including cleaning and repair of TFE pumps. Additionally, remediation wells GMW-O-15 and GMW-36 were redeveloped on June 17, 2010.

• The SVE system shut down on multiple occasions due to high temperature and no flame alarms. On several of these occasions, the SVE system was reset and restarted within one day. The SVE system was shut down to troubleshoot these alarms during June 11 through June 25, 2010 and from June 29, 2010 through the end of second quarter 2010.

Overall, during second quarter 2010, the SVE system operated 56% of the time (65% excluding planned shutdowns for groundwater monitoring) while the TFE/GWE system operated 49% of the time (58% excluding planned shutdowns for selenium evaluation and groundwater monitoring).

Vapor samples from the SVE system influent and water samples from TFE/GWE system influent were collected during the second quarter 2010 when the systems were in operation. During second quarter 2010, influent vapor samples were collected in May and June 2010 when both SVE and TFE/GWE systems were operating. Influent water samples were collected in April, May, and June 2010 when the TFE/GWE system was operating. The vapor and water samples were delivered to Calscience Environmental Laboratories, Inc. (Calscience), a laboratory certified by the California Department of Public Health Environmental Laboratory Accreditation Program, for analysis. Calscience analyzed the vapor samples for the following:

- fixed gases (methane, carbon dioxide, oxygen and argon) using ASTM D-1946;
- total petroleum hydrocarbons quantified as gasoline (TPHg) using EPA Method TO-3; and
- VOCs using EPA Method TO-15.

Calscience analyzed the water samples for the following:

- TPHg and TPH characterized as fuel products (TPHfp) using EPA Method 8015(M); and
- VOCs using EPA Method 8260B.



Analytical results for the influent vapor and water samples are summarized in Tables 4 and 5, respectively. The laboratory analytical reports and chain-of-custody documents for these samples are included in Appendix A.

VOC concentrations in vapors extracted from individual SVE wells were measured in the field using a photoionization detector (PID) calibrated using 50 parts per million by volume (ppmv) of hexane. The individual well vapor readings results are summarized in Table 6. Depths to product and groundwater were measured to the nearest 0.01 foot from the top of the well casing using an interface probe in selected wells. The gauging results are summarized in Table 7.

#### 4.0 SUMMARY OF REMEDIATION PROGRESS

Based on weekly monitoring of the influent vapor concentration, vapor extraction flow rate, and hours of operation, the total mass of VOCs removed by SVE was approximately 480 pounds during the second quarter of 2010, for a cumulative mass removed of approximately 19,631 pounds since implementing the Second Addendum system upgrades and over 3 million pounds since the SVE system began operation in 1995. The cumulative mass removed by SVE does not include the mass removed by biodegradation.

Approximately 1,079,027 gallons of groundwater were extracted during the second quarter 2010. This total includes approximately 791,007 gallons of water from the south-central area, 285,776 gallons of water from the southeastern area, and 2,244 gallons of water from the West Side Barrier area.

Groundwater extraction was discontinued in the West Side Barrier region during third quarter 2008 based on the reduced lateral extent and low concentrations of methyl tert-butyl ether (MTBE) and 1,2-dichloroethane (1,2-DCA) west of the site. Detected concentrations of MTBE and 1,2-DCA in wells west of the site have been below the conservative, site-specific, Risk-Based Corrective Action (RBCA) goals (Geomatrix, 1999) since August 2005. The lower (more conservative) RBCA goals for MTBE and 1,2-DCA are 40 micrograms per liter ( $\mu$ g/L) and 70  $\mu$ g/L, respectively. As noted above, groundwater extraction was temporarily operated at two West Side Barrier wells during the second quarter of 2010 to evaluate the efficacy of blending water with lower-selenium-concentrations from these wells with groundwater with elevated selenium concentrations extracted from the south-central and southeastern areas. 1,2-DCA and MTBE concentrations in the western area continue to be monitored and other wells in the West Side Barrier system will be restarted if necessary.

Removal of free product using TFE continued during second quarter 2010. Because the amount of free product removed by TFE was significantly less than the volume of groundwater



extracted, free product was emulsified in the relatively larger volume of groundwater extracted and was not observed to accumulate in the product holding tank of the groundwater treatment system. Therefore, the amount of free product removed by TFE was not estimated.

Based on the TPHg results for influent water samples and total groundwater extracted, the mass of TPHg removed by TFE and GWE in the south-central, southeastern, and west side barrier areas was approximately 73 pounds during second quarter 2010 for a cumulative mass removed from these areas of approximately 999 pounds since implementing system upgrades described in the Second Addendum. TPHfp also was detected in the influent water samples; however, TPHfp results were not used to calculate mass removal for dissolved petroleum hydrocarbons because the ranges of hydrocarbons for TPHg and TPHfp overlap. Because the non-overlapping portion of the TPHfp range was not used in the mass removal calculation and the amount of free product removed by TFE was not estimated, the total mass of petroleum hydrocarbons removed by TFE may be underestimated.

#### 5.0 SYSTEM EVALUATION AND OPTIMIZATION

During second quarter 2010, VOC concentrations were measured in individual wells using a PID in May 2010 as shown on Table 6. The operation status of the SVE wells at the end of the second quarter 2010 is also shown on Table 6. Because PID readings recorded on May 11, 2010 indicate VOC concentrations are close to or higher than 100 ppmv in several SVE wells, the SVE system will be operated until influent VOC concentrations reach low asymptotic levels before conducting another rebound test.

Groundwater monitoring in the West Side Barrier region during second quarter 2010 supports the continued shutdown of groundwater extraction in the region. 1,2-DCA and MTBE concentrations in the western area continue to be monitored and the West Side Barrier system will be restarted if necessary.

As shown in Table 7, groundwater elevations and product thicknesses in the south-central area have generally decreased since implementing the Second Addendum. During the second quarter 2010, free product was detected in two remediation wells. TFE will continue to be performed in areas with remaining free product. Selected remediation wells will continue to be monitored quarterly to assess remediation performance and remediation pump settings will be adjusted accordingly to optimize free product recovery and enhance hydraulic control of dissolved plumes.

The systems currently consist of twenty wells operated for product recovery and hydraulic control in the south-central part of the site (including eighteen wells operated for total fluids extraction and two wells operated for groundwater extraction) and three wells equipped with



total fluids extraction pumps operated for product recovery and hydraulic control in the southeastern part of the site (Table 1). Occasionally, certain extraction wells are temporarily shut down due to elevated selenium concentrations detected in extracted groundwater, as described previously in this report.

#### 6.0 PLANNED THIRD QUARTER 2010 ACTIVITIES

During the third quarter 2010, SFPP plans to continue to focus remedial efforts on the south-central and southeastern areas. Concentrations of 1,2 DCA and MTBE in the western area will continue to be monitored and the West Side Barrier system will be restarted if necessary. The TFE, GWE, and SVE systems for the south-central and southeastern areas will continue to operate. The TFE/GWE system will be monitored and the pumping configuration adjusted as necessary to maintain a concentration of selenium in the treatment system effluent below the NPDES permit discharge limits while additional extraction wells are brought back into service. Operation of the TFE system in the southeastern area will be monitored closely and adjustments will be made to improve fluid recovery. If SVE data indicate that VOC concentrations in the SVE system influent have decreased and reached low asymptotic levels, the SVE system will be shut down and rebound testing will commence soon thereafter. System inspections will continue on a weekly basis and system evaluation parameters will be collected as needed. The remediation activities and progress for third quarter 2010 will be described in the third quarter 2010 remediation progress report to be submitted by October 15, 2010.



#### 7.0 REFERENCES

- AMEC, Letter dated June 10, 2010 to Mr. Paul Cho, P.G., California Regional Water Quality Control Board; Re: Selenium Management Evaluation Update, SFPP Norwalk, 15306 Norwalk Boulevard, Norwalk, California
- AMEC, 2010, Remediation Progress Report, First Quarter 2010, April 15.
- California Regional Water Quality Control Board, Los Angeles Region, Letter dated October 25, 2006 to Mr. Kola Olowu, Defense Energy Support Center, Los Angeles, and Mr. Michael Pitta, Kinder Morgan Energy Partners; Conditional Approval of Revised Remedial Action Plan and Second Addendum to Remedial Action Plan for the Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk (SLIC No. 0286A, DOD No. 16638)
- Geomatrix Consultants, Inc., 2006, Second Addendum to Remedial Action Plan, Defense Fuel Support Point Norwalk, Norwalk, California, November 30.
- Geomatrix Consultants, Inc., 1999, Risk-Based Corrective Action, Western 1,2-DCA and MTBE Plumes, February.
- Kinder Morgan Energy Partners, Letter dated April 1, 2010 to Mr. Paul Cho, California Regional Water Quality Control Board; Transmittal of Selenium Management Summary Report for the SFPP, L.P. Norwalk Station, 15306 Norwalk Boulevard, Norwalk, California



# TABLES



#### TABLE 1 **REMEDIATION WELL CONSTRUCTION AND STATUS**

SFPP, L.P.

Defense Fuel Support Point Norwalk Norwalk, California

| Remediation<br>Area | Remediation<br>Well ID | Installation<br>Date | Top of Well<br>Casing<br>Elevation<br>(ft msl) | Well Screen<br>Interval<br>(ft bgs) | Remediation<br>Well Function | Well Operation<br>Status at End of<br>Second Quarter<br>2010 <sup>1</sup> |
|---------------------|------------------------|----------------------|------------------------------------------------|-------------------------------------|------------------------------|---------------------------------------------------------------------------|
|                     | MW-SF-1                | 6/18/1990            | 78.93                                          | 25 - 40                             | SVE                          | OFF                                                                       |
|                     | MW-SF-2                | 6/18/1990            | 78.53                                          | 25 - 40                             | SVE; TFE                     | OFF; OFF                                                                  |
|                     | MW-SF-3                | 6/18/1990            | 78.12                                          | 25 - 40                             | SVE; TFE                     | OFF; OFF                                                                  |
|                     | MW-SF-4                | 6/19/1990            | 79.38                                          | 25 - 40                             | SVE, TFE                     | OFF                                                                       |
|                     | MW-SF-5                | 9/19/1990            | 79.74                                          | 23 - 38                             | SVE                          | OFF                                                                       |
|                     | MW-SF-6                | 9/19/1990            | 76.80                                          | 25 - 40                             | SVE; TFE                     | OFF; OFF                                                                  |
|                     | MW-SF-9                | 6/15/1995            | 74.10                                          | 25 - 40                             | SVE                          | OFF                                                                       |
|                     | MW-SF-10               | 9/23/2003            | 76.53                                          | 10 - 30                             | SVE                          | OFF                                                                       |
|                     | MW-SF-11               | 6/19/2007            | 78.56                                          | 20 - 40                             | SVE: TFE                     | OFF; OFF                                                                  |
|                     | MW-SF-12               | 6/18/2007            | 78.07                                          | 20 - 40                             | SVE; TFE                     | OFF; OFF                                                                  |
|                     | MW-SF-13               | 6/19/2007            | 73.40                                          | 20 - 40                             | SVE; TFE                     | OFF; OFF                                                                  |
|                     | MW-SF-14               | 6/21/2007            | 78.16                                          | 20 - 40                             | SVE; TFE                     | OFF; ON                                                                   |
|                     | MW-SF-15               | 6/21/2007            | 78.10<br>78.27                                 | 20 - 40                             | SVE; TFE                     | OFF; OFF                                                                  |
|                     | MW-SF-16               | 6/20/2007            | 78.21                                          | 20 - 40                             | SVE; TFE                     | OFF; OFF                                                                  |
|                     | GMW-9                  | 7/8/1991             | 74.44                                          | 20 - 50                             | SVE; TFE                     | OFF; OFF                                                                  |
| South-Central       | -                      | 7/8/1991             | 74.67                                          | 25 - 50<br>25 - 50                  | SVE                          | OFF                                                                       |
| Occur Ochilar       | GMW-10<br>GMW-22       | 8/2/1991             | 74.17                                          | 25 - 60                             | SVE; TFE                     | OFF; OFF                                                                  |
|                     | GMW-24                 | 8/5/1991             | 74.17                                          | 25 - 60                             | SVE; TFE                     | OFF; OFF                                                                  |
|                     | GMW-25                 | 1/10/1992            | 74.04                                          | 20 - 50                             | SVE; TFE                     | OFF; OFF                                                                  |
|                     | GWR-3                  | 1/10/1992            | 74.93                                          | 20 - 50                             | SVE; GWE                     | OFF; OFF                                                                  |
|                     | VEW-1                  |                      | 74.95                                          | 20 - 30                             | SVE, GVVL                    | OFF                                                                       |
|                     | VEW-2                  |                      |                                                |                                     | SVE                          | OFF                                                                       |
|                     | MW-O-1                 | 1/22/1991            | 75.48                                          | 25 - 40                             | SVE; TFE                     | OFF; OFF                                                                  |
|                     | MW-O-2                 | 1/23/1991            | 71.90                                          | 25 - 40                             | SVE; TFE                     | OFF; OFF                                                                  |
|                     | GMW-O-11               | 5/20/1992            | 74.17                                          | 20 - 50                             | SVE; TFE                     | OFF; ON                                                                   |
|                     | GMW-O-12               | 5/21/1992            | 73.49                                          | 20 - 50                             | SVE                          | OFF                                                                       |
|                     | GMW-O-12<br>GMW-O-20   | 6/15/1995            | 73.32                                          | 20 - 30                             | SVE; TFE                     | OFF; OFF                                                                  |
|                     | GMW-O-21               | 10/1/1997            | 71.43                                          | 26 - 46                             | TFE                          | OFF                                                                       |
|                     | GMW-O-21               | 6/25/2007            | 73.63                                          | 20 - 40                             | SVE; TFE                     | OFF; OFF                                                                  |
|                     | MW-18 (MID)            | 6/10/1991            | 75.67                                          | 50 - 60                             | SVE                          | OFF                                                                       |
|                     | HW-2                   |                      | 70.07                                          |                                     | SVE                          | OFF                                                                       |
|                     | GMW-O-15               | 4/19/1994            | 74.23                                          | 20 - 50                             | SVE; TFE                     | OFF; ON                                                                   |
|                     | GMW-O-13               | 7/25/1994            | 74.23                                          | 21 - 40                             | SVE; TFE                     | OFF; ON                                                                   |
| Southeastern        | GMW-36                 | 4/11/1994            | 74.53                                          | 20 - 50                             | TFE                          | OFF, ON<br>ON                                                             |
| Coulifeastelli      | GMW-SF-9               | 4/1/2003             | 73.00                                          | 37 - 46                             | GWE                          | OFF                                                                       |
|                     | GMW-SF-10              | 4/2/2003             | 75.77                                          | 37 - 46                             | GWE                          | OFF                                                                       |
|                     | BW-2                   | 5/20/1996            | 73.57                                          | 27 - 47                             | GWE                          | OFF                                                                       |
|                     | BW-3                   | 5/20/1996            | 73.57<br>74.16                                 | 31 - 50                             | GWE                          | OFF                                                                       |
|                     | BW-4                   | 5/20/1996            | 74.10                                          | 28 - 47                             | GWE                          | OFF                                                                       |
| West Side           | BW-5                   | 5/23/1996            | 73.59                                          | 27 - 46                             | GWE                          | OFF                                                                       |
| Barrier             | BW-6                   | 5/23/1996            | 73.48                                          | 28 - 47                             | GWE                          | OFF                                                                       |
| Daillei             | BW-7                   | 5/22/1996            | 73.46<br>74.65                                 | 27 - 46                             | GWE                          | OFF                                                                       |
|                     | BW-8                   | 5/21/1996            | 75.08                                          | 27 - 46                             | GWE                          | OFF                                                                       |
|                     | BW-9                   | 5/21/1996            | 76.19                                          | 27 - 46<br>27 - 46                  | GWE                          | OFF                                                                       |

Notes

1. The well operations listed correspond to the well functions indicated in the previous column. Based on information provided by SFPP, L.P.

### <u>Abbreviations</u>

-- = information not available

ft msl = feet above mean sea level based on the National Geodetic Vertical Datum of 1929.

ft bgs = feet below ground surface

GWE = groundwater extraction SVE = soil vapor extraction

TFE = total fluids extraction



#### TABLE 2 **VAPOR REMEDIATION SYSTEM OPERATION SUMMARY**

SFPP, L.P. Defense Fuel Support Point Norwalk Norwalk, California

| System Inspection Date      | Cumulative<br>Hours of<br>Operation<br>(hours) | Incremental<br>Hours of<br>Operation<br>(hours) | Influent TPHg<br>Concentration<br>(ppmv) <sup>1</sup> | Influent FID or PID<br>Reading (ppmv as<br>hexane) | System Flow (scfm) | Header Vacuum<br>("H₂O) | Mass<br>Removed<br>(pounds) <sup>2</sup> |
|-----------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|--------------------|-------------------------|------------------------------------------|
| 2007 Totals <sup>3</sup>    | 58,319                                         | 2,058                                           |                                                       | -                                                  |                    |                         | 3,742                                    |
| 2008 Totals                 | 64,233                                         | 5,915                                           | -                                                     | -                                                  |                    |                         | 5,878                                    |
| 2009 Totals                 | 68,858                                         | 4,625                                           | -                                                     | -                                                  | -                  | -                       | 9,387                                    |
| First Quarter 2010 Totals   | 70,038                                         | 1,180                                           |                                                       |                                                    |                    |                         | 144                                      |
| 04/07/10                    | 70,147.4                                       | 109.2                                           |                                                       | 49                                                 | 613                | 25                      | 49                                       |
| 04/16/10                    | 70,276.0                                       | 128.6                                           |                                                       | 30                                                 | 779                | 30                      | 45                                       |
| 04/23/10                    | 70,441.4                                       | 165.4                                           |                                                       | 30                                                 | 536                | 25                      | 40                                       |
| 04/28/10                    | 70,554.5                                       | 113.1                                           |                                                       | 21                                                 | 965                | 34                      | 34                                       |
| 05/04/10                    | 70,663.0                                       | 108.5                                           | 13                                                    | 23                                                 | 566                | 25                      | 21                                       |
| 05/11/10                    | 70,799.8                                       | 136.8                                           |                                                       | 39                                                 | 1,007              | 30                      | 81                                       |
| 05/18/10                    | 70,931.7                                       | 131.9                                           |                                                       | 128                                                | 318                | 30                      | 81                                       |
| 05/21/10                    | 70,998.2                                       | 66.5                                            |                                                       | 6                                                  | 498                | 33                      | 3                                        |
| 06/01/10                    | 71,003.4                                       | 5.2                                             |                                                       | 8                                                  | 629                | 30                      | 0                                        |
| 06/08/10                    | 71,169.3                                       | 165.9                                           |                                                       | 32                                                 | 1,576              | 30                      | 127                                      |
| 06/11/10                    | 71,220.2                                       | 50.9                                            |                                                       |                                                    |                    |                         |                                          |
| 06/25/10                    | 71,220.2                                       | 0.0                                             |                                                       |                                                    |                    |                         | 0                                        |
| 06/29/10                    | 71,267.8                                       | 47.6                                            |                                                       |                                                    |                    |                         |                                          |
| Second Quarter 2010 Totals  | -                                              | 1,230                                           | -                                                     |                                                    |                    |                         | 480                                      |
| Cumulative Mass Removed Sin | ce Implementati                                | on of RAP Upgra                                 | ıdes <sup>4</sup>                                     |                                                    |                    |                         | 19,631                                   |

- Notes:

  1. The TPHg concentration reflects analytical results for vapor samples collected from the influent of the Vapor Remediation System. Refer to Table 4 for a summary of analytical results for influent vapor samples.
- 2. The total mass removed is based on influent FID or PID readings, hours of operation, and flow rate.
- 3. The 2007 total includes only operation after upgrades were made to the South-Central system.
- 4. Upgrades to the South-Central system are described in the Second Addendum to Remedial Action Plan.

Data reported based on information provided by SFPP, L.P.

Abbreviations:
TPHg = total petroleum hydrocarbons as gasoline (C4-C12)

ppmv = parts per million by volume

FID = flame ionization detector

PID = photo ionization detector

scfm = standard cubic feet per minute

 $H_20$  = inches of water

-- = not applicable or not available



## TABLE 3 GROUNDWATER REMEDIATION SYSTEM OPERATION SUMMARY

SFPP, L.P.
Defense Fuel Support Point Norwalk
Norwalk, California

| System Inspection Date    | Groundwater<br>Removed from the<br>South-Central Area<br>(gallons) | Groundwater<br>Removed from the<br>Southeastern Area<br>(gallons) | Groundwater<br>Removed from the<br>West Side Barrier<br>Area<br>(gallons) | Influent TPHg<br>Concentration<br>(μg/L) <sup>1</sup> | TPHg Removed from<br>the South-Central,<br>Southeastern, and<br>West Side Barrier<br>Areas<br>(pounds) <sup>2</sup> |
|---------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 2007 Totals <sup>3</sup>  | 2,080,762                                                          | 529,411                                                           | 630,877                                                                   |                                                       | 395                                                                                                                 |
| 2008 Totals               | 5,391,860                                                          | 700,882                                                           | 405,954 <sup>4</sup>                                                      |                                                       | 311                                                                                                                 |
| 2009 Totals               | 8,044,836                                                          | 770,869                                                           | 0                                                                         |                                                       | 161                                                                                                                 |
| First Quarter 2010 Totals | 739,900                                                            | 193,233                                                           | 0                                                                         |                                                       | 58                                                                                                                  |
| 04/01/10                  | 27,240                                                             | 12,165                                                            | 0                                                                         | 7,000                                                 | 2.30                                                                                                                |
| 04/02/10                  | 18,323                                                             | 8,108                                                             | 0                                                                         | 7,000                                                 | 1.54                                                                                                                |
| 04/07/10                  | 23,087                                                             | 10,746                                                            | 0                                                                         | 7,000                                                 | 1.97                                                                                                                |
| 04/13/10                  | 0                                                                  | 0                                                                 | 0                                                                         | 7,000                                                 | 0.00                                                                                                                |
| 04/16/10                  | 6,239                                                              | 4,254                                                             | 0                                                                         | 7,000                                                 | 0.61                                                                                                                |
| 04/20/10                  | 40,691                                                             | 30,143                                                            | 0                                                                         | 10,000                                                | 5.90                                                                                                                |
| 04/23/10                  | 699                                                                | 261                                                               | 0                                                                         | 10,000                                                | 0.08                                                                                                                |
| 04/26/10                  | 74,271                                                             | 22,738                                                            | 0                                                                         | 10,000                                                | 8.09                                                                                                                |
| 04/28/10                  | 48,558                                                             | 14,884                                                            | 0                                                                         | 10,000                                                | 5.29                                                                                                                |
| 04/29/10                  | 24,954                                                             | 7,695                                                             | 0                                                                         | 10,000                                                | 2.72                                                                                                                |
| 05/03/10                  | 368                                                                | 161                                                               | 0                                                                         | 10,000                                                | 0.04                                                                                                                |
| 05/04/10                  | 661                                                                | 140                                                               | 0                                                                         | 10,000                                                | 0.07                                                                                                                |
| 05/07/10                  | 1,875                                                              | 388                                                               | 0                                                                         | 10,000                                                | 0.19                                                                                                                |
| 05/11/10                  | 3,186                                                              | 1,743                                                             | 0                                                                         | 10,000                                                | 0.41                                                                                                                |
| 05/12/10                  | 6,521                                                              | 1,511                                                             | 64                                                                        | 10,000                                                | 0.67                                                                                                                |
| 05/14/10                  | 26,397                                                             | 253                                                               | 56                                                                        | 8,500                                                 | 1.89                                                                                                                |
| 05/18/10                  | 65,925                                                             | 21,266                                                            | 1,187                                                                     | 8,500                                                 | 6.26                                                                                                                |
| 05/21/10                  | 56,437                                                             | 19,923                                                            | 0                                                                         | 8,500                                                 | 5.41                                                                                                                |
| 05/25/10                  | 16,625                                                             | 12,132                                                            | 734                                                                       | 8,500                                                 | 2.09                                                                                                                |
| 06/01/10                  | 135                                                                | 199                                                               | 0                                                                         | 8,500                                                 | 0.02                                                                                                                |
| 06/07/10                  | 83,229                                                             | 4                                                                 | 0                                                                         | 8,500                                                 | 5.90                                                                                                                |
| 06/08/10                  | 17,325                                                             | 0                                                                 | 0                                                                         | 8,500                                                 | 1.23                                                                                                                |
| 06/09/10                  | 14,941                                                             | 733                                                               | 0                                                                         | 8,500                                                 | 1.11                                                                                                                |
| 06/11/10                  | 25,226                                                             | 10,240                                                            | 0                                                                         | 8,500                                                 | 2.51                                                                                                                |
| 06/15/10                  | 2,146                                                              | 981                                                               | 176                                                                       | 8,500                                                 | 0.23                                                                                                                |
| 06/17/10                  | 36,771                                                             | 14,015                                                            | 26                                                                        | 8,500                                                 | 3.60                                                                                                                |
| 06/22/10                  | 60,628                                                             | 34,143                                                            | 1                                                                         | 8,500                                                 | 6.71                                                                                                                |
| 06/25/10                  | 46,026                                                             | 25,350                                                            | 0                                                                         | 4,600                                                 | 2.74                                                                                                                |
| 06/29/10                  | 62,523                                                             | 31,600                                                            | 0                                                                         | 4,600                                                 | 3.61                                                                                                                |
| Totals                    | 791,007                                                            | 285,776                                                           | 2.244                                                                     |                                                       | 73                                                                                                                  |

#### Notes

- 1. The TPHg concentration reflects analytical results for samples collected from the influent of the Total Fluids Extractions (TFE) system that extracts groundwater from the south-central, southeastern, and west side barrier areas. Refer to Table 5 for a summary of analytical results for the groundwater samples. For a given period the most recent analytical result available is used to calculate TPHg removed.
- 2. The mass of TPHg removed (pounds) is based on concentrations of dissolved TPHg in the most recent TFE system influent samples and the volume of groundwater extracted by TFE. Total petroleum hydrocarbons characterized as fuel products (TPHfp) also were detected in the TFE system influent samples (see Table 5) but were not used in estimating the mass of petroleum hydrocarbons removed from groundwater.
- 3. The 2007 total includes only operation after upgrades were made to the South-Central system.
- 4. Groundwater removal in the West Side Barrier Area was discontinued in August, 2008. Groundwater extraction from West Side Barrier Area wells BW-3 and BW-6 was resumed on May 14, 2010 to evaluate the efficacy of blending water with lower-selenium-concentrations from these wells with groundwater extracted from the South-Central and Southeastern areas.
- 5. Upgrades to the South-Central remediation system are described in the Second Addendum to Remedial Action Plan.

Data reported based on information provided by SFPP, L.P.

#### Abbreviations:

TPHg = total petroleum hydrocarbons as gasoline (C4-C12).  $\mu$ g/L = micrograms per liter



# TABLE 4 EXTRACTED VAPOR ANALYTICAL RESULTS

SFPP, L.P.

Defense Fuel Support Point Norwalk Norwalk, California

| Date       | Total Fluids                | A                 | STM D-19                  | 946                       | ЕРА ТО-3       |                   | EPA TO                 | -15 (VOCs         | ) <sup>2</sup>    |                |
|------------|-----------------------------|-------------------|---------------------------|---------------------------|----------------|-------------------|------------------------|-------------------|-------------------|----------------|
| Sampled    | Extraction<br>System Status | Methane<br>(%v)   | Carbon<br>Dioxide<br>(%v) | Oxygen &<br>Argon<br>(%v) | TPHg<br>(ppmv) | Benzene<br>(ppbv) | Ethylbenzene<br>(ppbv) | Toluene<br>(ppbv) | Xylenes<br>(ppbv) | MTBE<br>(ppbv) |
| 8/3/2007   | ON                          | <0.5 <sup>8</sup> | <0.5                      | 22.0                      | 63             | 650               | 220                    | 1,100             | 1,420             | 55             |
| 9/5/2007   | OFF                         | <0.5              | <0.5                      | 22.0                      | 9              | 32                | 48                     | 140               | 320               | 18             |
| 10/2/2007  | ON                          | <0.5              | <0.5                      | 21.9                      | 27             | 250               | 75                     | 430               | 610               | 20             |
| 11/2/2007  | ON                          | <0.5              | <0.5                      | 22.1                      | 5              | 40                | 10                     | 74                | 95                | 7              |
| 2/1/2008   | ON                          | <0.5              | <0.5                      | 21.8                      | 100            | 830               | 260                    | 2,200             | 1,850             | <50            |
| 3/4/2008   | ON                          | <0.5              | <0.5                      | 21.7                      | 50             | 380               | 98                     | 570               | 1,250             | 36             |
| 4/8/2008   | OFF                         | <0.5              | <0.5                      | 22.2                      | 69             | 290               | 110                    | 480               | 1,040             | 41             |
| 5/23/2008  | OFF                         | <0.5              | <0.5                      | 21.8                      | 14             | 180               | 24                     | 190               | 280               | 23             |
| 6/3/2008   | OFF                         | <0.5              | <0.5                      | 21.7                      | 30             | 380               | 42                     | 400               | 330               | 70             |
| 7/2/2008   | ON                          | <0.5              | <0.5                      | 21.4                      | 49             | 32                | 6                      | 34                | 45                | 10             |
| 8/19/2008  | ON                          | <0.5              | 1.7                       | 20.8                      | 50             | 390               | 63                     | 230               | 450               | 40             |
| 9/5/2008   | ON                          | <0.5              | 2.0                       | 21.2                      | 22             | 130               | 39                     | 130               | 340               | 42             |
| 10/7/2008  | ON                          | <0.5              | 1.43                      | 21.4                      | 10             | 41                | 15                     | 54                | 181               | 6.8            |
| 11/4/2008  | ON                          | <0.5              | 2.08                      | 21.1                      | 7.5            | 31                | 47                     | 190               | 242               | <2.0           |
| 3/6/2009   | ON                          | <0.5              | <0.5                      | 22.0                      | 83             | 1,900             | 180                    | 990               | 770               | 240            |
| 4/17/2009  | ON                          | <0.5              | <0.5                      | 22.2                      | 3.1            | 140               | 8                      | 37                | 68                | 26             |
| 5/29/2009  | ON                          | <0.5              | 1.08                      | 21.0                      | 130            | 1,700             | 640                    | 3,700             | 3,100             | 100            |
| 8/18/2009  | ON                          | <0.5              | 0.78                      | 21.7                      | 28             | 380               | 37                     | 290               | 310               | 33             |
| 8/25/2009  | ON                          | <0.5              | 0.87                      | 20.6                      | 37             | 500               | 44                     | 320               | 293               | 20             |
| 9/18/2009  | ON                          | <0.5              | 0.37                      | 21.6                      | 11             | 75                | 11                     | 39                | 107               | 3              |
| 10/29/2009 | ON                          | <0.5              | 1.80                      | 18.2                      | 77             | 350               | 45                     | 250               | 440               | 4              |
| 11/25/2009 | ON                          | <0.5              | <0.5                      | 21.1                      | 14             | 110               | 12                     | 110               | 164               | 11             |
| 12/15/2009 | OFF                         | <0.5              | <0.5                      | 21.7                      | 7              | 28                | 3                      | 20                | 47                | <3.2           |
| 2/26/2010  | ON                          | <0.5              | 0.4                       | 21.2                      | 20             | 300               | 18                     | 220               | 260               | 21             |
| 3/26/2010  | ON                          | <0.5              | 1.0                       | 20.2                      | 18             | 380               | 20                     | 110               | 90                | 5              |
| 5/4/2010   | ON                          | <0.5              | 0.4                       | 21.4                      | 13             | 100               | 42                     | 170               | 222               | 3              |
| 6/29/2010  | ON                          | <0.5              | 0.4                       | 21.3                      | 9              | 74                | 13                     | 66                | 82                | <5.0           |

### Notes:

- 1. Influent vapor samples were collected from the manifold conveying soil vapors extracted from the south-central and southeastern areas.
- 2. Other detected volatile organic compounds (VOCs) are included in the laboratory analytical reports in Appendix A.

### Abbreviations:

%v = percent by volume

TPHg = total petroleum hydrocarbons as gasoline (C4-C12)

ppmv = parts per million by volume

ppbv = parts per billion by volume

MTBE = methyl tert-butyl ether

<0.5 = not detected at or above the laboratory reporting limit shown



# TABLE 5 EXTRACTED GROUNDWATER ANALYTICAL RESULTS

SFPP, L.P.

Defense Fuel Support Point Norwalk Norwalk, California

| Date       | EPA 80         |                    | EPA               | 8260B Volatile (       | Organic Co        | mpounds (V        | OCs) <sup>2</sup> |
|------------|----------------|--------------------|-------------------|------------------------|-------------------|-------------------|-------------------|
| Sampled    | TPHg<br>(µg/L) | TPHfp<br>(µg/L)    | Benzene<br>(µg/L) | Ethylbenzene<br>(µg/L) | Toluene<br>(µg/L) | Xylenes<br>(μg/L) | MTBE<br>(µg/L)    |
| 7/11/2007  |                |                    | 4,800             | 130                    | 890               | 1,040             | 690               |
| 8/7/2007   | 14,000         | 11,000             | 5,400             | 140                    | 1,100             | 770               | 540               |
| 9/25/2007  | 12,000         | 30,000             | 3,400             | 310                    | 1,600             | 2,390             | 540               |
| 10/16/2007 | 8,900          | 8,400              | 3,400             | 94                     | 520               | 660               | 390               |
| 11/2/2007  | 44,000         | 6,500              | 3,200             | 130                    | 860               | 1,160             | 570               |
| 11/30/2007 | 6,000          | 5,200              | 1,800             | 48                     | 170               | 490               | 450               |
| 12/21/2007 | 7,200          | 4,200              | 2,100             | 41                     | 170               | 430               | 750               |
| 1/4/2008   | 4,300          | 7,200              | 3,300             | 49                     | 300               | 540               | 620               |
| 1/18/2008  | 11,000         | 2,200              | 3,600             | 140                    | 650               | 850               | 620               |
| 2/1/2008   | 8,700          | 5,700              | 3,600             | 100                    | 440               | 930               | 560               |
| 3/4/2008   | 7,200          | 4,900              | 3,900             | 120                    | 510               | 770               | 620               |
| 4/8/2008   | 8,100          | 10,000             | 2,800             | 96                     | 280               | 580               | 640               |
| 5/6/2008   | 5,300          | 2,800              | 2,900             | 76                     | 190               | 328               | 430               |
| 6/3/2008   | 8,400          | 6,800              | 3,700             | 110                    | 450               | 480               | 320               |
| 7/2/2008   | 9,200          | 4,300 <sup>3</sup> | 4,500             | 75                     | 620               | 650               | 400               |
| 8/19/2008  | 4,000          | 6,600              | 2,600             | 57                     | 76                | 215               | 450               |
| 9/5/2008   | 160            | <500               | <12               | <25                    | <25               | <25               | <25               |
| 10/7/2008  | <100           | <500               | 0.36 J            | <1.0                   | <1.0              | 1.59              | 1.7               |
| 11/4/2008  | 12,000         | 660,000            | 2,500             | 140                    | 220               | 760               | 160               |
| 12/4/2008  | 1,300          | 1,500              | 600               | 8.2                    | 28                | 73                | 130               |
| 1/6/2009   | 1,500          | 980                | 560               | 23                     | 41                | 110               | 320               |
| 3/6/2009   | 2,500          | 1,500              | 1,100             | 33                     | 51                | 114               | 65                |
| 4/7/2009   | 3,100          | 6,900              | 1,100             | 36                     | 230               | 207               | 210               |
| 5/13/2009  | 690            | 1,500              | 120               | 3.2                    | 14                | 60                | 24                |
| 6/12/2009  | 150            | <500               | <0.50             | <1.0                   | <1.0              | 0.71 J            | 44                |
| 7/10/2009  | 4,500          | 560                | 1,500             | 41                     | 68                | 175               | 150               |
| 8/4/2009   | 2,000          | 1,000              | 1,200             | 16                     | 18                | 64                | 100               |
| 9/1/2009   | 4,800          | 3,500              | 380               | 45                     | 25                | 328               | 5.4 J             |
| 10/6/2009  | 3,900          | 4,600              | 3,200             | 21                     | 15                | 35                | 82                |
| 10/27/2009 | 1,000          | <500               | 520               | 4                      | 15                | 10                | 180               |
| 11/3/2009  | 120            | <500               | 2                 | 0.55 J                 | 0.61 J            | 3                 | 40                |
| 11/25/2009 | 5,700          | 4,000              | 3,100             | 26                     | 13                | 48                | 88                |
| 2/16/2010  | 8,000          | 5,900              | 4,700             | 110                    | 1,300             | 800               | 1,800             |
| 3/9/2010   | 7,000          | 5,900              | 6,600             | 110                    | 460               | 550               | 410               |
| 4/20/2010  | 10,000         | 11,000             | 6,000             | 44                     | 230               | 174               | 130               |
| 5/14/2010  | 8,500          | 2,100              | 3,600             | 67                     | 380               | 400               | 210               |
| 6/25/2010  | 4,600          | 2,600              | 2,200             | 61                     | 540               | 380               | 170               |

#### Notes:

- Influent samples were collected from the manifold conveying groundwater extracted from the south-central, southeastern, and west side barrier areas.
- 2. Other detected VOCs are included in the laboratory analytical reports in Appendix A.
- ${\it 3. \ TPHfp\ result\ from\ influent\ extracted\ groundwater\ sample\ collected\ on\ July\ 10,\ 2008.}$

#### Abbreviations:

TPHg = total petroleum hydrocarbons as gasoline (C4-C12)

μg/L = micrograms per liter

TPHfp = total petroleum hydrocarbons as fuel products (C7-C28)

MTBE = methyl tert-butyl ether

-- = not analyzed

<500 = Not detected at or above the laboratory reporting limit (RL) shown

J = Analyte was detected above the laboratory method detection limit and below the laboratory RL



# TABLE 6 REMEDIATION WELL VAPOR CONCENTRATIONS

SFPP, L.P. Defense Fuel Support Point Norwalk Norwalk, California

|                |             |                            | Well Operation    |                  |
|----------------|-------------|----------------------------|-------------------|------------------|
| Remediation    | Remediation | Remediation                | Status at End of  |                  |
| Area           | Well ID     | Well Function <sup>1</sup> | Second Quarter    | 5/11/2010        |
|                |             |                            | 2010 <sup>2</sup> | (ppmv as Hexane) |
|                | MW-SF-1     | SVE                        | OFF               | 56.8             |
|                | MW-SF-2     | SVE; TFE                   | OFF; OFF          | 11.0             |
|                | MW-SF-3     | SVE; TFE                   | OFF; OFF          | 95.1             |
|                | MW-SF-4     | SVE                        | OFF               | 25.6             |
|                | MW-SF-5     | SVE                        | OFF               | 86.0             |
|                | MW-SF-6     | SVE; TFE                   | OFF; OFF          | 15.3             |
|                | MW-SF-9     | SVE                        | OFF               | 4.1              |
|                | MW-SF-10    | SVE                        | OFF               | 2.5              |
|                | MW-SF-11    | SVE; TFE                   | OFF; OFF          | 7.5              |
|                | MW-SF-12    | SVE; TFE                   | OFF; OFF          | 93.7             |
|                | MW-SF-13    | SVE; TFE                   | OFF; OFF          | 318.3            |
|                | MW-SF-14    | SVE; TFE                   | OFF; ON           | 17.1             |
|                | MW-SF-15    | SVE; TFE                   | OFF; OFF          | 166.7            |
|                | MW-SF-16    | SVE; TFE                   | OFF; OFF          | 103.3            |
| South-Central  | GMW-9       | SVE; TFE                   | OFF; OFF          | 14.7             |
| 30utii-Centiai | GMW-10      | SVE                        | OFF               | 32.8             |
|                | GMW-22      | SVE; TFE                   | OFF; OFF          | 14.7             |
|                | GMW-24      | SVE; TFE                   | OFF; OFF          | 17.1             |
|                | GMW-25      | SVE; GWE                   | OFF; OFF          | 17.1             |
|                | GWR-3       | SVE; GWE                   | OFF; OFF          | 52.7             |
|                | VEW-1       | SVE                        | OFF               | 63.7             |
|                | VEW-2       | SVE                        | OFF               | 36.0             |
|                | MW-O-1      | SVE; TFE                   | OFF; OFF          | 2.9              |
|                | MW-O-2      | SVE; TFE                   | OFF; OFF          | 9.7              |
|                | GMW-O-11    | SVE; TFE                   | OFF; ON           | 39.7             |
|                | GMW-O-12    | SVE                        | OFF               | 4.9              |
|                | GMW-O-20    | SVE; TFE                   | OFF; OFF          | 3.6              |
|                | GMW-O-23    | SVE; TFE                   | OFF; OFF          | 8.1              |
|                | MW-18 (MID) | SVE                        | OFF               | 0.6              |
|                | HW-2        | SVE                        | OFF               | 32.4             |
| Southeastern   | GMW-O-15    | SVE; TFE                   | OFF; ON           | 1.3              |
| Codinodolom    | GMW-O-18    | SVE; TFE                   | OFF; ON           | 1.3              |

#### Notes:

- ${\bf 1.}\ \ {\bf The\ well\ operations\ listed\ correspond\ to\ the\ well\ functions\ indicated\ in\ the\ previous\ column.}$
- 2. Vapor readings measured in the field with a Photoionization Detector calibrated using 50 ppmv of hexane.

Data reported based on information provided by SFPP, L.P.

#### Abbreviations:

SVE = Soil Vapor Extraction

TFE = Total Fluids Extraction

GWE - Groundwater Extractions

ppmv = parts per million by volume

NM = not measured



| Well ID <sup>1</sup> | Date Gauged             | Top of Well Casing<br>Elevation | Measured Depth to Groundwater | Measured Depth to Product | Apparent Product<br>Thickness | Groundwater<br>Elevation | Gauged By               |
|----------------------|-------------------------|---------------------------------|-------------------------------|---------------------------|-------------------------------|--------------------------|-------------------------|
|                      |                         | (ft msl)                        | (ft bTOC)                     | (ft bTOC)                 | (feet)                        | (ft msl)                 |                         |
| GMW-1                | 8/28/2007               | 74.77                           | 19.70                         |                           |                               | 55.07                    | Stantec                 |
|                      | 2/19/2008               | 74.77                           | 25.20                         |                           |                               | 49.57                    | Stantec                 |
|                      | 3/21/2008               | 74.77                           | 25.23                         |                           |                               | 49.54                    | Envent                  |
|                      | 4/14/2008               | 74.77                           | 25.12                         |                           |                               | 49.65                    | Stantec                 |
|                      | 10/13/2008              | 74.77                           | 25.84                         |                           |                               | 48.93                    | Stantec                 |
|                      | 4/20/2009               | 74.77                           | 26.18                         |                           |                               | 48.59                    | Blaine Tech             |
|                      | 10/19/2009              | 74.77                           | 27.52                         |                           |                               | 47.25                    | Blaine Tech             |
|                      | 5/24/2010               | 74.77                           | 26.95                         |                           |                               | 47.82                    | Blaine Tech             |
|                      | 5/28/2010               | 74.77                           | 26.91                         |                           |                               | 47.86                    | Blaine Tech             |
| GMW-9                | 8/8/2008                | 74.44                           | 28.01                         | 27.96                     | 0.05                          |                          | Envent                  |
|                      | 10/16/2008              | 74.44                           | 28.36                         | 28.35                     | 0.01                          |                          | Envent                  |
|                      | 12/17/2008              | 74.44                           | 27.61                         |                           |                               | 46.83                    | Envent                  |
|                      | 1/15/2009               | 74.44                           | 28.91                         |                           |                               | 45.53                    | Envent                  |
|                      | 3/27/2009               | 74.44                           | 29.04                         |                           |                               | 45.40                    | Envent                  |
|                      | 4/21/2009               | 74.44                           | 28.16                         |                           |                               | 46.28                    | Envent                  |
|                      | 7/21/2009               | 74.44                           | 28.31                         |                           |                               | 46.13                    | Envent                  |
|                      | 5/24/2010               | 74.44                           | 30.47                         |                           |                               | 43.97                    | Blaine Tech             |
|                      | 5/28/2010               | 74.44                           | 30.35                         |                           |                               | 44.09                    | Blaine Tech             |
| GMW-22               | 11/12/2007              | 74.17                           | 26.45                         | 25.91                     | 0.54                          |                          | Stantec                 |
|                      | 8/12/2008               | 74.17                           | 26.70                         |                           |                               | 47.47                    | Envent                  |
|                      | 10/31/2008              | 74.17                           | 28.25                         | 27.04                     | 1.21                          |                          | Envent                  |
|                      | 11/4/2008               | 74.17                           | 26.97                         |                           |                               | 47.20                    | Envent                  |
|                      | 12/17/2008              | 74.17                           | 26.65                         |                           |                               | 47.52                    | Envent                  |
|                      | 1/15/2009               | 74.17                           | 27.18                         |                           |                               | 46.99                    | Envent                  |
|                      | 3/27/2009               | 74.17                           | 27.86                         |                           |                               | 46.31                    | Envent                  |
|                      | 4/21/2009               | 74.17                           | 27.30                         | 27.20                     | 0.10                          |                          | Envent                  |
|                      | 7/21/2009               | 74.17                           | 27.70                         |                           |                               | 46.47                    | Envent                  |
|                      | 11/6/2009               | 74.17                           | 28.12                         |                           |                               | 46.05                    | Kinder Morgan           |
| GMW-23               | 11/12/2007              | 74.85                           | 25.41                         |                           |                               | 49.44                    | Stantec                 |
|                      | 12/28/2007              | 74.85                           | 26.20                         |                           |                               | 48.65                    | Geomatrix               |
|                      | 4/14/2008               | 74.85                           | 25.62                         |                           |                               | 49.23                    | Stantec                 |
|                      | 10/13/2008              | 74.85                           | 26.21                         |                           |                               | 48.64                    | Stantec                 |
|                      | 4/20/2009               | 74.85                           | 26.29                         |                           |                               | 48.56                    | Blaine Tech             |
|                      | 7/21/2009               | 74.85                           | 27.33                         |                           |                               | 47.52                    | Envent                  |
|                      | 10/19/2009              | 74.85                           | 27.51                         |                           |                               | 47.34                    | Blaine Tech             |
|                      | 5/24/2010               | 74.85                           | 27.32                         |                           |                               | 47.53                    | Blaine Tech             |
|                      | 5/28/2010               | 74.85                           | 27.27                         |                           |                               | 47.58                    | Blaine Tech             |
| GMW-24               | 11/12/2007              | 74.04                           | 27.50                         | 27.46                     | 0.04                          |                          | Stantec                 |
|                      | 8/19/2008               | 74.04                           | 29.34                         | 28.24                     | 1.10                          |                          | Envent                  |
|                      | 10/17/2008              | 74.04<br>74.04                  | 30.88                         | 29.90<br>28.30            | 0.98<br>1.34                  |                          | Envent                  |
|                      | 10/21/2008              |                                 | 29.64                         | 28.30                     | 1.34                          |                          | Envent                  |
|                      | 12/18/2008              | 74.04                           | 29.04                         |                           |                               | 45.00                    | Envent                  |
|                      | 1/15/2009               | 74.04                           | 30.56                         | 29.80                     | 0.76                          | 42.76                    | Envent                  |
|                      | 3/20/2009               | 74.04                           | 31.28                         |                           |                               |                          | Envent                  |
|                      | 3/27/2009<br>4/21/2009  | 74.04<br>74.04                  | 30.45<br>29.91                |                           |                               | 43.59<br>44.13           | Envent                  |
|                      |                         | 74.04<br>74.04                  | 29.91<br>32.78                |                           |                               |                          | Envent                  |
|                      | 7/21/2009<br>2/4/2010   | 74.04<br>74.04                  | 32.78<br>29.67                | 29.40                     | 0.27                          | 41.26                    | Envent<br>Kinder Mergan |
|                      |                         | 74.04<br>74.04                  |                               | 29.40                     | 0.27                          |                          | Kinder Morgar           |
| GMW-25               | 6/22/2010               |                                 | 29.47                         | 27.25                     | 0.05                          | 44.57                    | Blaine Tech             |
| GIVIVV-25            | 11/12/2007              | 74.29                           | 27.30                         |                           |                               |                          | Stantec                 |
|                      | 8/12/2008<br>10/17/2008 | 74.29<br>74.29                  | 27.81<br>28.26                |                           |                               | 46.48<br>46.03           | Envent<br>Envent        |
|                      |                         |                                 |                               |                           |                               |                          |                         |
|                      | 12/18/2008              | 74.29                           | 29.01                         |                           |                               | 45.28                    | Envent                  |
|                      | 1/15/2009               | 74.29                           | 28.62                         |                           |                               | 45.67                    | Envent                  |
|                      | 3/24/2009               | 74.29                           | 28.79                         |                           |                               | 45.50                    | Envent                  |
|                      | 4/21/2009               | 74.29                           | 28.35                         |                           |                               | 45.94                    | Envent                  |
|                      | 7/21/2009               | 74.29                           | 29.80                         |                           |                               | 44.49                    | Envent                  |
|                      | 10/19/2009              | 74.29                           | 30.28                         |                           |                               | 44.01                    | Blaine Tech             |
|                      | 6/22/2010               | 74.29                           | 31.64                         |                           |                               | 42.65                    | Blaine Tech             |



|                      |                         | Ī                               | I                             |                           | ·                             |                          | ı                        |
|----------------------|-------------------------|---------------------------------|-------------------------------|---------------------------|-------------------------------|--------------------------|--------------------------|
| Well ID <sup>1</sup> | Date Gauged             | Top of Well Casing<br>Elevation | Measured Depth to Groundwater | Measured Depth to Product | Apparent Product<br>Thickness | Groundwater<br>Elevation | Gauged By                |
|                      |                         | (ft msl)                        | (ft bTOC)                     | (ft bTOC)                 | (feet)                        | (ft msl)                 |                          |
| GMW-27               | 11/12/2007              | 74.41                           | 24.90                         |                           |                               | 49.51                    | Stantec                  |
|                      | 12/21/2007              | 74.41                           | 25.59                         |                           |                               | 48.82                    | Geomatrix                |
|                      | 4/14/2008               | 74.41                           | 25.21                         |                           |                               | 49.20                    | Stantec                  |
|                      | 8/11/2008<br>10/13/2008 | 74.41<br>74.41                  | 29.68<br>25.81                |                           |                               | 44.73<br>48.60           | Stantec<br>Stantec       |
|                      | 11/21/2008              | 74.41                           | 26.20                         |                           |                               | 48.21                    | Stantec                  |
|                      | 4/20/2009               | 74.41                           | 26.04                         |                           |                               | 48.37                    | Blaine Tech              |
|                      | 10/19/2009              | 74.41                           | 27.39                         |                           |                               | 47.02                    | Blaine Tech              |
|                      | 5/24/2010               | 74.41                           | 26.90                         |                           |                               | 47.51                    | Blaine Tech              |
|                      | 5/28/2010               | 74.41                           | 26.96                         |                           |                               | 47.45                    | Blaine Tech              |
| GMW-30               | 8/21/2007               | 74.91                           | 23.81                         |                           |                               | 51.10                    | Geomatrix                |
|                      | 8/28/2007               | 74.91                           | 24.65                         |                           |                               | 50.26                    | Stantec                  |
|                      | 9/11/2007               | 74.91<br>74.91                  | 24.63<br>25.13                |                           |                               | 50.28<br>49.78           | Geomatrix<br>Geomatrix   |
|                      | 10/5/2007<br>11/2/2007  | 74.91                           | 27.45                         |                           |                               | 49.76<br>47.46           | Geomatrix                |
|                      | 11/12/2007              | 74.91                           | 25.38                         |                           |                               | 49.53                    | Stantec                  |
|                      | 4/14/2008               | 74.91                           | 25.65                         |                           |                               | 49.26                    | Stantec                  |
|                      | 11/4/2008               | 74.91                           | 26.52                         |                           |                               | 48.39                    | Stantec                  |
|                      | 4/20/2009               | 74.91                           | 26.30                         |                           |                               | 48.61                    | Blaine Tech              |
|                      | 10/19/2009              | 74.91                           | 27.40                         |                           |                               | 47.51                    | Blaine Tech              |
|                      | 5/24/2010               | 74.91                           | 27.32                         |                           |                               | 47.59                    | Blaine Tech              |
| Chara co             | 5/28/2010               | 74.91                           | 27.18                         |                           |                               | 47.73                    | Blaine Tech              |
| GMW-36               | 8/28/2007<br>11/12/2007 | 74.53<br>74.53                  | 24.31<br>24.86                | <br>24.85                 | 0.01                          | 50.22                    | Stantec<br>Stantec       |
|                      | 2/19/2008               | 74.53                           | 25.50                         | 24.65                     | 0.01                          | 49.27                    | Stantec                  |
|                      | 4/14/2008               | 74.53                           | 24.61                         |                           |                               | 50.16                    | Stantec                  |
|                      | 8/8/2008                | 74.53                           | 26.20                         | 26.14                     | 0.06                          |                          | Envent                   |
|                      | 10/16/2008              | 74.53                           | 26.11                         | 26.09                     | 0.02                          |                          | Envent                   |
|                      | 12/18/2008              | 74.53                           | 28.70                         | 28.65                     | 0.05                          |                          | Envent                   |
|                      | 1/15/2009               | 74.53                           | 27.73                         | 27.45                     | 0.28                          |                          | Envent                   |
|                      | 2/20/2009               | 74.53                           | 26.39                         | 26.35                     | 0.04                          |                          | Envent                   |
|                      | 2/23/2009               | 74.53                           | 26.13                         | 25.80                     | 0.33                          |                          | Blaine Tech              |
|                      | 3/24/2009               | 74.53                           | 29.83                         |                           |                               | 44.70<br>                | Envent                   |
|                      | 4/20/2009<br>7/17/2009  | 74.53<br>74.53                  | 25.63<br>27.40                | 25.59                     | 0.04                          | 47.13                    | Blaine Tech<br>Envent    |
|                      | 7/21/2009               | 74.53                           | 26.03                         |                           |                               | 48.50                    | Envent                   |
|                      | 7/22/2009               | 74.53                           | 25.90                         |                           |                               | 48.63                    | Blaine Tech              |
|                      | 10/19/2009              | 74.53                           | 26.56                         | 26.45                     | 0.11                          |                          | Blaine Tech              |
|                      | 2/4/2010                | 74.53                           | 26.93                         | 26.80                     | 0.13                          |                          | Kinder Morgan            |
|                      | 3/15/2010               | 74.53                           | 26.80                         |                           |                               | 47.73                    | Blaine Tech              |
|                      | 4/16/2010               | 74.53                           | 26.90                         |                           |                               | 47.63                    | Blaine Tech              |
|                      | 5/24/2010               | 74.53                           | 25.96                         | 25.90                     | 0.06                          |                          | Blaine Tech              |
|                      | 5/28/2010               | 74.53                           | 25.94                         | 25.88                     | 0.06                          |                          | Blaine Tech              |
| GMW-0-11             | 6/22/2010<br>11/12/2007 | 74.56<br>74.17                  | 25.94<br>24.40                | 25.91                     | 0.03                          | 49.77                    | Blaine Tech<br>Stantec   |
| GIVIVV-O-11          | 8/15/2008               | 74.17                           | 29.30                         |                           |                               | 44.87                    | Envent                   |
|                      | 10/17/2008              | 74.17                           | 24.45                         |                           |                               | 49.72                    | Envent                   |
|                      | 12/19/2008              | 74.17                           | 24.85                         |                           |                               | 49.32                    | Envent                   |
|                      | 1/15/2009               | 74.17                           | 26.87                         | 24.38                     | 2.49                          |                          | Envent                   |
|                      | 2/24/2009               | 74.17                           | 24.31                         | 24.21                     | 0.10                          |                          | Envent                   |
|                      | 3/27/2009               | 74.17                           | 31.08                         |                           |                               | 43.09                    | Envent                   |
|                      | 4/21/2009               | 74.17                           | 25.36                         | 25.34                     | 0.02                          |                          | Envent                   |
|                      | 7/21/2009               | 74.17                           | 26.18                         |                           |                               | 47.99                    | Envent                   |
| GMW O 12             | 11/6/2009               | 74.17                           | 26.33                         | 26.18                     | 0.15                          | 50.36                    | Kinder Morgan<br>Stantec |
| GMW-O-12             | 11/12/2007<br>4/14/2008 | 73.49<br>73.49                  | 23.13<br>23.36                |                           |                               | 50.36<br>50.13           | Stantec                  |
|                      | 10/13/2008              | 73.49                           | 24.20                         |                           |                               | 49.29                    | Stantec                  |
|                      | 4/20/2009               | 73.49                           | 24.21                         |                           |                               | 49.28                    | Blaine Tech              |
|                      | 10/19/2009              | 73.49                           | 25.08                         |                           |                               | 48.41                    | Blaine Tech              |
|                      | 5/24/2010               | 73.49                           | 24.80                         |                           |                               | 48.69                    | Blaine Tech              |
|                      | 5/28/2010               | 73.49                           | 24.74                         |                           |                               | 48.75                    | Blaine Tech              |
| GMW-O-15             | 11/12/2007              | 74.23                           | 23.95                         | 23.85                     | 0.10                          |                          | Stantec                  |
|                      | 4/14/2008               | 74.23                           | 23.64                         |                           |                               | 50.59                    | Stantec                  |
|                      | 8/8/2008                | 74.23                           | 24.60                         |                           |                               | 50.59                    | Envent                   |
|                      | 8/11/2008               | 74.23                           | 24.40                         | 24.34                     | 0.06                          | 40.70                    | Stantec                  |
|                      | 10/16/2008              | 74.23                           | 24.53                         |                           |                               | 49.70                    | Envent                   |
|                      | 12/18/2008              | 74.23<br>74.23                  | 24.86<br>24.82                |                           |                               | 49.37<br>49.41           | Envent<br>Envent         |
|                      | 1/2/2009<br>1/15/2009   | 74.23<br>74.23                  | 26.01                         |                           |                               | 48.22                    | Envent                   |
|                      | 2/20/2009               | 74.23                           | 24.80                         |                           |                               | 49.43                    | Envent                   |
|                      | 2/23/2009               | 74.23                           | 24.76                         | 24.74                     | 0.02                          |                          | Blaine Tech              |
|                      | 3/24/2009               | 74.23                           | 25.55                         |                           |                               | 48.68                    | Envent                   |
|                      | 4/20/2009               | 74.23                           | 24.66                         | 24.61                     | 0.05                          |                          | Blaine Tech              |
|                      |                         | 74.23                           | 25.01                         |                           |                               | 49.22                    | Envent                   |



| Well ID <sup>1</sup> | Date Gauged             | Top of Well Casing<br>Elevation | Measured Depth to Groundwater | Measured Depth to Product | Apparent Product<br>Thickness | Groundwater<br>Elevation | Gauged By           |
|----------------------|-------------------------|---------------------------------|-------------------------------|---------------------------|-------------------------------|--------------------------|---------------------|
|                      |                         | (ft msl)                        | (ft bTOC)                     | (ft bTOC)                 | (feet)                        | (ft msl)                 |                     |
| GMW-O-15             | 7/22/2009               | 74.23                           | 24.99                         | 24.94                     | 0.05                          |                          | Blaine Tech         |
|                      | 10/19/2009              | 74.23                           | 25.55                         | 25.43                     | 0.12                          |                          | Blaine Tech         |
|                      | 2/4/2010                | 74.23                           | 25.50                         | 25.48                     | 0.02                          |                          | Kinder Morgan       |
|                      | 4/16/2010               | 74.23                           | 23.10                         |                           |                               | 51.13                    | Blaine Tech         |
|                      | 5/24/2010               | 74.23                           | 25.67                         |                           |                               | 48.56                    | Blaine Tech         |
|                      | 5/28/2010               | 74.23                           | 25.35                         |                           |                               | 48.88                    | Blaine Tech         |
|                      | 6/22/2010               | 74.23                           | 25.81                         |                           |                               | 48.42                    | Blaine Tech         |
| GMW-O-20             | 8/15/2008               | 73.32                           | 25.90                         |                           |                               | 47.42                    | Envent              |
|                      | 10/17/2008              | 73.32                           | 25.82                         |                           |                               | 47.50                    | Envent              |
|                      | 12/19/2008              | 73.32                           | 27.15                         | 20.00                     | 0.44                          | 46.17                    | Envent              |
|                      | 1/15/2009               | 73.32<br>73.32                  | 26.53<br>27.85                | 26.09                     | 0.44                          | <br>45.47                | Envent<br>Envent    |
|                      | 2/24/2009<br>3/20/2009  | 73.32                           | 28.81                         |                           |                               | 44.51                    | Envent              |
|                      | 3/27/2009               | 73.32                           | 27.84                         |                           |                               | 45.48                    | Envent              |
|                      | 4/21/2009               | 73.32                           | 28.70                         |                           |                               | 44.62                    | Envent              |
|                      | 7/21/2009               | 73.32                           | 24.10                         |                           |                               | 49.22                    | Envent              |
|                      | 11/9/2009               | 73.32                           | 25.60                         | 25.40                     | 0.20                          |                          | Kinder Morgan       |
|                      | 6/22/2010               | 73.32                           | 24.76                         | 24.66                     | 0.10                          |                          | Blaine Tech         |
| GMW-O-21             | 12/28/2007              | 71.43                           | 27.67                         |                           |                               | 43.76                    | Geomatrix           |
|                      | 10/17/2008              | 71.43                           | 26.00                         |                           |                               | 45.43                    | Envent              |
|                      | 12/19/2008              | 71.43                           | 24.82                         |                           |                               | 46.61                    | Envent              |
|                      | 3/27/2009               | 71.43                           | 26.41                         |                           |                               | 45.02                    | Envent              |
|                      | 7/21/2009               | 71.43                           | 24.88                         |                           |                               | 46.55                    | Envent              |
|                      | 11/9/2009               | 71.43                           | 25.02                         |                           |                               | 46.41                    | Kinder Morgan       |
| GMW-O-23             | 8/14/2007               | 73.63                           | 23.33                         |                           |                               | 50.30                    | Geomatrix           |
|                      | 8/21/2007               | 73.63                           | 23.31                         |                           |                               | 50.32                    | Geomatrix           |
|                      | 8/28/2007               | 73.63                           | 23.00                         |                           |                               | 50.63                    | Stantec             |
|                      | 9/11/2007               | 73.63                           | 23.42                         |                           |                               | 50.21                    | Geomatrix           |
|                      | 10/5/2007               | 73.63                           | 27.79                         |                           |                               | 45.84                    | Geomatrix           |
|                      | 11/2/2007               | 73.63                           | 25.15                         |                           |                               | 48.48                    | Geomatrix           |
|                      | 11/13/2007              | 73.63                           | 23.90                         |                           |                               | 49.73                    | Stantec             |
|                      | 12/28/2007              | 73.63<br>73.63                  | 24.91<br>26.28                |                           |                               | 48.72<br>47.35           | Geomatrix<br>Envent |
|                      | 8/15/2008<br>10/17/2008 | 73.63                           | 27.16                         |                           |                               | 46.47                    | Envent              |
|                      | 12/19/2008              | 73.63                           | 27.16                         |                           |                               | 46.03                    | Envent              |
|                      | 1/15/2009               | 73.63                           | 27.54                         |                           |                               | 46.09                    | Envent              |
|                      | 2/24/2009               | 73.63                           | 26.19                         |                           |                               | 47.44                    | Envent              |
|                      | 3/27/2009               | 73.63                           | 23.74                         |                           |                               | 49.89                    | Envent              |
|                      | 4/21/2009               | 73.63                           | 27.30                         |                           |                               | 46.33                    | Envent              |
|                      | 11/9/2009               | 73.63                           | 27.50                         |                           |                               | 46.13                    | Kinder Morgan       |
|                      | 6/22/2010               | 73.63                           | 32.10                         |                           |                               | 41.53                    | Blaine Tech         |
| GWR-1                | 11/12/2007              | 73.65                           | 24.05                         |                           |                               | 49.60                    | Stantec             |
|                      | 12/21/2007              | 73.65                           | 24.91                         |                           |                               | 48.74                    | Geomatrix           |
|                      | 4/14/2008               | 73.65                           | 24.40                         |                           |                               | 49.25                    | Stantec             |
|                      | 10/13/2008              | 73.65                           | 25.06                         |                           |                               | 48.59                    | Stantec             |
|                      | 4/20/2009               | 77.40                           | 28.78                         |                           |                               | 48.62                    | Blaine Tech         |
|                      | 10/19/2009              | 77.40                           | 29.98                         |                           |                               | 47.42                    | Blaine Tech         |
|                      | 5/24/2010               | 77.40                           | 26.37                         |                           |                               | 51.03                    | Blaine Tech         |
| A1115 -              | 5/28/2010               | 77.40                           | 25.91                         |                           |                               | 51.49                    | Blaine Tech         |
| GWR-3                | 11/12/2007              | 74.93                           | 27.90                         |                           |                               | 47.03                    | Stantec             |
|                      | 10/17/2008              | 74.93                           | 29.88                         |                           |                               | 45.05                    | Envent              |
|                      | 12/17/2008              | 74.93                           | 19.71                         |                           | 0.00                          | 55.22                    | Envent              |
|                      | 1/15/2009               | 74.93<br>74.93                  | 29.27<br>27.18                | 29.26                     | 0.26                          | <br>47.75                | Envent<br>Envent    |
|                      | 3/27/2009<br>4/21/2009  |                                 | 29.97                         |                           |                               | 47.75<br>44.96           |                     |
|                      | 7/21/2009               | 74.93<br>74.93                  | 28.77                         |                           |                               | 44.96<br>46.16           | Envent<br>Envent    |
| MW-O-1               | 8/14/2007               | 75.48                           | 25.31                         | 23.78                     | 1.53                          | 40.16                    | Geomatrix           |
|                      | 8/21/2007               | 75.48<br>75.48                  | 23.84                         | 23.58                     | 0.26                          |                          | Geomatrix           |
|                      | 8/28/2007               | 75.48                           | 23.07                         | 23.06                     | 0.01                          |                          | Stantec             |
|                      | 9/11/2007               | 75.48                           | 23.86                         | 23.48                     | 0.38                          |                          | Geomatrix           |
|                      | 10/5/2007               | 75.48                           | 24.67                         |                           |                               | 50.81                    | Geomatrix           |
|                      | 11/2/2007               | 75.48                           | 24.25                         |                           |                               | 51.23                    | Geomatrix           |
|                      | 11/12/2007              | 75.48                           | 24.27                         | 24.25                     | 0.02                          |                          | Stantec             |
|                      | 12/28/2007              | 75.48                           | 25.54                         | 25.51                     | 0.03                          |                          | Geomatrix           |
|                      | 8/19/2008               | 75.48                           | 25.18                         | 25.13                     | 0.05                          |                          | Envent              |
|                      | 10/17/2008              | 75.48                           | 25.30                         |                           |                               | 50.18                    | Envent              |
|                      | 12/19/2008              | 75.48                           | 26.31                         |                           |                               | 49.17                    | Envent              |
|                      | 1/15/2009               | 75.48                           | 25.84                         |                           |                               | 49.64                    | Envent              |
|                      | 4/21/2009               | 75.48                           | 25.41                         |                           |                               | 50.07                    | Envent              |
|                      | 10/19/2009              | 75.48                           | 26.30                         |                           |                               | 49.18                    | Blaine Tech         |



| Well ID <sup>1</sup> | Date Gauged              | Top of Well Casing<br>Elevation | Measured Depth to Groundwater | Measured Depth<br>to Product | Apparent Product<br>Thickness | Groundwater<br>Elevation | Gauged By                  |
|----------------------|--------------------------|---------------------------------|-------------------------------|------------------------------|-------------------------------|--------------------------|----------------------------|
|                      |                          | (ft msl)                        | (ft bTOC)                     | (ft bTOC)                    | (feet)                        | (ft msl)                 |                            |
| MW-O-2               | 11/12/2007               | 71.90                           | 23.10                         |                              |                               | 48.80                    | Stantec                    |
|                      | 10/17/2008               | 71.90                           | 24.85                         |                              |                               | 47.05                    | Envent                     |
|                      | 12/19/2008               | 71.90                           | 25.51                         |                              |                               | 46.39                    | Envent                     |
|                      | 3/27/2009<br>7/21/2009   | 71.90<br>71.90                  | 25.22<br>23.63                |                              |                               | 46.68<br>48.27           | Envent<br>Envent           |
|                      | 11/9/2009                | 71.90                           | 25.39                         |                              |                               | 46.51                    | Kinder Morgan              |
| MW-SF-1              | 8/28/2007                | 78.93                           | 27.94                         |                              |                               | 50.99                    | Stantec                    |
|                      | 11/12/2007               | 78.93                           | 28.76                         |                              |                               | 50.17                    | Stantec                    |
|                      | 2/19/2008                | 78.93                           | 29.50                         |                              |                               | 49.43                    | Stantec                    |
|                      | 4/14/2008                | 78.93                           | 29.16                         |                              |                               | 49.77                    | Stantec                    |
|                      | 8/11/2008                | 78.93                           | 29.75                         |                              |                               | 49.18                    | Stantec                    |
|                      | 10/13/2008               | 78.93                           | 29.86                         |                              |                               | 49.07                    | Stantec                    |
|                      | 2/23/2009                | 78.93                           | 30.00<br>29.97                |                              |                               | 48.93                    | Blaine Tech<br>Blaine Tech |
|                      | 4/20/2009<br>7/22/2009   | 78.93<br>78.93                  | 30.98                         |                              |                               | 48.96<br>47.95           | Blaine Tech                |
|                      | 10/19/2009               | 78.93                           | 31.11                         |                              |                               | 47.82                    | Blaine Tech                |
|                      | 3/15/2010                | 78.93                           | 31.74                         |                              |                               | 47.19                    | Blaine Tech                |
|                      | 5/24/2010                | 78.93                           | 30.79                         |                              |                               | 48.14                    | Blaine Tech                |
|                      | 5/28/2010                | 78.93                           | 30.57                         |                              |                               | 48.36                    | Blaine Tech                |
|                      | 6/22/2010                | 78.93                           | 30.84                         |                              |                               | 48.09                    | Blaine Tech                |
| MW-SF-2              | 11/12/2007               | 78.53                           | 29.18                         | 28.71                        | 0.47                          |                          | Stantec                    |
|                      | 8/12/2008                | 78.53                           | 31.11                         |                              |                               | 47.42                    | Envent                     |
|                      | 10/17/2008               | 78.53                           | 31.55                         | 31.50                        | 0.05                          |                          | Envent                     |
|                      | 12/18/2008               | 78.53                           | 32.75                         | 32.55                        | 0.20                          |                          | Envent                     |
|                      | 1/15/2009                | 78.53                           | 30.84                         | 30.57                        | 0.27                          | 40.69                    | Envent<br>Envent           |
|                      | 3/24/2009<br>4/21/2009   | 78.53<br>78.53                  | 28.85<br>29.98                |                              |                               | 49.68<br>48.55           | Envent                     |
|                      | 7/21/2009                | 78.53                           | 29.85                         |                              |                               | 48.68                    | Envent                     |
|                      | 12/9/2009                | 78.53                           | 31.45                         |                              |                               | 47.08                    | Kinder Morgan              |
| MW-SF-3              | 11/12/2007               | 78.12                           | 29.34                         | 28.28                        | 1.06                          |                          | Stantec                    |
|                      | 8/12/2008                | 78.12                           | 30.30                         | 29.05                        | 1.25                          |                          | Envent                     |
|                      | 10/17/2008               | 78.12                           | 29.45                         |                              |                               | 48.67                    | Envent                     |
|                      | 12/18/2008               | 78.12                           | 31.08                         | 30.82                        | 0.26                          |                          | Envent                     |
|                      | 1/15/2009                | 78.12                           | 29.96                         | 29.94                        | 0.02                          |                          | Envent                     |
|                      | 3/20/2009                | 78.12                           | 31.10                         |                              |                               | 47.02                    | Envent                     |
|                      | 3/24/2009                | 78.12                           | 27.82                         | 20.50                        |                               | 50.30                    | Envent                     |
|                      | 4/21/2009<br>7/21/2009   | 78.12<br>78.12                  | 29.51<br>30.07                | 29.50                        | 0.01                          | 48.05                    | Envent<br>Envent           |
|                      | 11/6/2009                | 78.12<br>78.12                  | 30.37                         | 30.35                        | 0.02                          | 46.05                    | Kinder Morgan              |
|                      | 12/9/2009                | 78.12                           | 30.53                         | 30.33                        | 0.02                          | 48.05                    | Kinder Morgan              |
| MW-SF-4              | 8/14/2007                | 79.38                           | 30.34                         | 28.38                        | 1.96                          |                          | Geomatrix                  |
|                      | 8/28/2007                | 79.38                           | 29.95                         | 28.30                        | 1.65                          |                          | Stantec                    |
|                      | 9/11/2007                | 79.38                           | 29.98                         | 28.43                        | 1.55                          |                          | Geomatrix                  |
|                      | 10/5/2007                | 79.38                           | 30.68                         | 28.85                        | 1.83                          |                          | Geomatrix                  |
|                      | 10/12/2007               | 79.38                           | 30.27                         | 29.96                        | 0.31                          |                          | Geomatrix                  |
|                      | 10/19/2007               | 79.38                           | 30.28                         |                              |                               | 49.10                    | Geomatrix                  |
|                      | 10/26/2007               | 79.38                           | 30.52                         |                              |                               | 48.86                    | Geomatrix                  |
|                      | 11/2/2007                | 79.38                           | 30.68                         | 20.60                        | 0.01                          | 48.70<br>                | Geomatrix<br>Stantec       |
|                      | 11/12/2007<br>12/21/2007 | 79.38<br>79.38                  | 29.70<br>30.69                | 29.69                        | 0.01                          | 48.69                    | Geomatrix                  |
|                      | 2/19/2008                | 79.38                           | 30.22                         |                              |                               | 49.16                    | Stantec                    |
|                      | 3/21/2008                | 79.38                           | 30.22                         |                              |                               | 49.31                    | Envent                     |
|                      | 4/14/2008                | 79.38                           | 29.95                         |                              |                               | 49.43                    | Stantec                    |
|                      | 8/8/2008                 | 79.38                           | 30.51                         |                              |                               | 48.87                    | Envent                     |
|                      | 8/11/2008                | 79.38                           | 30.57                         |                              |                               | 48.81                    | Stantec                    |
|                      | 10/16/2008               | 79.38                           | 30.77                         |                              |                               | 48.61                    | Envent                     |
|                      | 1/15/2009                | 79.38                           | 31.14                         |                              |                               | 48.24                    | Envent                     |
|                      | 2/20/2009                | 79.38                           | 30.84                         |                              |                               | 48.54                    | Envent                     |
|                      | 2/23/2009                | 79.38                           | 30.96                         |                              |                               | 48.42                    | Blaine Tech                |
|                      | 4/20/2009                | 79.38                           | 30.02                         | 29.94                        | 0.08                          | 40.00                    | Blaine Tech                |
|                      | 4/28/2009                | 79.38                           | 30.78                         |                              |                               | 48.60                    | Envent                     |
|                      | 7/17/2009<br>7/22/2009   | 79.38<br>79.38                  | 31.85<br>31.65                | <br>31 61                    | 0.04                          | 47.53                    | Envent<br>Blaine Tech      |
|                      | 10/19/2009               | 79.38<br>79.38                  | 31.65<br>31.93                | 31.61<br>31.90               | 0.04<br>0.03                  |                          | Blaine Tech                |
|                      | 3/15/2010                | 79.38<br>79.38                  | 31.95                         | 31.90                        | 0.03                          |                          | Blaine Tech                |
|                      | 5/24/2010                | 79.38                           | 31.60                         | 31.91                        | 0.04                          | 47.78                    | Blaine Tech                |
|                      | 5/28/2010                | 79.38                           | 26.40                         |                              |                               | 52.98                    | Blaine Tech                |
|                      | 6/22/2010                | 79.38                           | 31.63                         |                              |                               | 47.75                    | Blaine Tech                |
| MW-SF-5              | 8/21/2007                | 79.74                           | 28.36                         |                              |                               | 51.38                    | Geomatrix                  |
|                      | 8/28/2007                | 79.74                           | 28.84                         |                              |                               | 50.90                    | Stantec                    |
|                      | 10/5/2007                | 79.74                           | 29.50                         |                              |                               | 50.24                    | Geomatrix                  |
|                      | 11/2/2007                | 79.74                           | 31.50                         |                              |                               | 48.24                    | Geomatrix                  |
|                      | 11/12/2007               | 79.74                           | 29.93                         |                              |                               | 49.81                    | Stantec                    |
|                      | 12/21/2007               | 79.74                           | 31.00                         |                              |                               | 48.74                    | Geomatrix                  |



|                      |                         | <b>T</b>                        |                               |                           | A 1.5 .                       |                          |                            |
|----------------------|-------------------------|---------------------------------|-------------------------------|---------------------------|-------------------------------|--------------------------|----------------------------|
| Well ID <sup>1</sup> | Date Gauged             | Top of Well Casing<br>Elevation | Measured Depth to Groundwater | Measured Depth to Product | Apparent Product<br>Thickness | Groundwater<br>Elevation | Gauged By                  |
|                      |                         | (ft msl)                        | (ft bTOC)                     | (ft bTOC)                 | (feet)                        | (ft msl)                 |                            |
| MW-SF-5              | 4/14/2008               | 79.74                           | 30.20                         |                           |                               | 49.54                    | Stantec                    |
|                      | 8/11/2008               | 79.74                           | 30.85                         |                           |                               | 48.89                    | Stantec                    |
|                      | 10/13/2008              | 79.74                           | 30.93                         |                           |                               | 48.81                    | Stantec                    |
|                      | 4/20/2009               | 79.74<br>79.74                  | 30.99                         |                           |                               | 48.75<br>48.19           | Blaine Tech<br>Blaine Tech |
|                      | 5/24/2010<br>5/28/2010  | 79.74<br>79.74                  | 31.55<br>31.44                |                           |                               | 48.30                    | Blaine Tech                |
|                      | 6/22/2010               | 79.74                           | 31.57                         |                           |                               | 48.17                    | Blaine Tech                |
| MW-SF-6              | 11/12/2007              | 76.80                           | 27.14                         |                           |                               | 49.66                    | Stantec                    |
|                      | 8/12/2008               | 76.80                           | 29.82                         |                           |                               | 46.98                    | Envent                     |
|                      | 10/17/2008              | 76.80                           | 29.75                         |                           |                               | 47.05                    | Envent                     |
|                      | 12/18/2008              | 76.80                           | 30.73                         |                           |                               | 46.07                    | Envent                     |
|                      | 1/15/2009               | 76.80                           | 31.35                         |                           |                               | 45.45                    | Envent                     |
|                      | 3/24/2009               | 76.80                           | 30.50                         |                           |                               | 46.30                    | Envent                     |
|                      | 4/21/2009<br>7/21/2009  | 76.80<br>76.80                  | 28.45<br>27.22                |                           |                               | 48.35<br>49.58           | Envent<br>Envent           |
|                      | 11/6/2009               | 76.80                           | 29.10                         |                           |                               | 47.70                    | Kinder Morgai              |
|                      | 12/9/2009               | 76.80                           | 31.35                         |                           |                               | 45.45                    | Kinder Morga               |
| MW-SF-9              | 8/14/2007               | 74.10                           | 28.73                         | 28.61                     | 0.12                          |                          | Geomatrix                  |
|                      | 8/28/2007               | 74.10                           | 20.55                         |                           |                               | 53.55                    | Stantec                    |
|                      | 8/21/2007               | 74.10                           | 26.55                         |                           |                               | 47.55                    | Geomatrix                  |
|                      | 9/11/2007               | 74.10                           | 19.40                         |                           |                               | 54.70                    | Geomatrix                  |
|                      | 10/5/2007               | 74.10                           | 26.84                         |                           |                               | 47.26                    | Geomatrix                  |
|                      | 11/2/2007               | 74.10                           | 22.76                         |                           |                               | 51.34                    | Geomatrix                  |
|                      | 11/12/2007              | 74.10                           | 22.96                         |                           |                               | 51.14                    | Stantec                    |
|                      | 12/21/2007<br>4/14/2008 | 74.10<br>74.10                  | 24.05<br>24.23                |                           |                               | 50.05<br>49.87           | Geomatrix<br>Stantec       |
|                      | 10/13/2008              | 74.10                           | 24.83                         |                           |                               | 49.27                    | Stantec                    |
|                      | 4/20/2009               | 74.10                           | 25.27                         |                           |                               | 48.83                    | Blaine Tech                |
| MW-SF-9              | 10/19/2009              | 74.10                           | 26.45                         |                           |                               | 47.65                    | Blaine Tech                |
|                      | 5/24/2010               | 74.10                           | 25.80                         |                           |                               | 48.30                    | Blaine Tech                |
|                      | 5/28/2010               | 74.10                           | 25.66                         |                           |                               | 48.44                    | Blaine Tech                |
|                      | 6/22/2010               | 74.10                           | 25.84                         |                           |                               | 48.26                    | Blaine Tech                |
| MW-SF-11             | 8/14/2007               | 78.56                           | 28.58                         | 28.30                     | 0.28                          |                          | Geomatrix                  |
|                      | 8/21/2007               | 78.56<br>78.56                  | 28.76                         | 28.63                     | 0.13                          | <br>50.34                | Geomatrix<br>Stantec       |
|                      | 8/28/2007<br>9/11/2007  | 78.56                           | 28.22<br>26.90                |                           |                               | 51.66                    | Geomatrix                  |
|                      | 10/5/2007               | 78.56                           | 28.43                         |                           |                               | 50.13                    | Geomatrix                  |
|                      | 11/2/2007               | 78.56                           | 29.48                         | 29.38                     | 0.10                          |                          | Geomatrix                  |
|                      | 11/12/2007              | 78.56                           | 29.03                         |                           |                               | 49.53                    | Stantec                    |
|                      | 8/15/2008               | 78.56                           | 30.13                         |                           |                               | 48.43                    | Envent                     |
|                      | 10/17/2008              | 78.56                           | 30.50                         |                           |                               | 48.06                    | Envent                     |
|                      | 12/18/2008              | 78.56                           | 29.92                         |                           |                               | 48.64                    | Envent                     |
|                      | 1/15/2009               | 78.56                           | 30.32                         |                           |                               | 48.24                    | Envent                     |
|                      | 3/24/2009               | 78.56                           | 31.05                         |                           |                               | 47.51                    | Envent                     |
|                      | 4/21/2009               | 78.56<br>78.56                  | 30.03<br>30.89                |                           |                               | 48.53<br>47.67           | Envent<br>Envent           |
|                      | 7/21/2009<br>11/9/2009  | 78.56                           | 31.00                         |                           |                               | 47.56                    | Kinder Morga               |
| MW-SF-12             | 8/14/2007               | 78.07                           | 27.76                         |                           |                               | 50.31                    | Geomatrix                  |
|                      | 8/21/2007               | 78.07                           | 27.43                         |                           |                               | 50.64                    | Geomatrix                  |
|                      | 8/28/2007               | 78.07                           | 27.58                         |                           |                               | 50.49                    | Stantec                    |
|                      | 9/11/2007               | 78.07                           | 27.73                         |                           |                               | 50.34                    | Geomatrix                  |
|                      | 10/5/2007               | 78.07                           | 28.06                         |                           |                               | 50.01                    | Geomatrix                  |
|                      | 11/2/2007               | 78.07                           | 29.59                         |                           |                               | 48.48                    | Geomatrix                  |
|                      | 11/12/2007              | 78.07                           | 28.33                         |                           |                               | 49.74                    | Stantec                    |
|                      | 8/12/2008<br>10/17/2008 | 78.07<br>78.07                  | 30.02<br>30.42                |                           |                               | 48.05<br>47.65           | Envent<br>Envent           |
|                      | 10/17/2008              | 78.07<br>78.07                  | 30.42<br>31.55                |                           |                               | 47.65<br>46.52           | Envent                     |
|                      | 1/15/2009               | 78.07                           | 30.11                         |                           |                               | 47.96                    | Envent                     |
|                      | 3/24/2009               | 78.07                           | 29.41                         |                           |                               | 48.66                    | Envent                     |
|                      | 4/21/2009               | 78.07                           | 29.52                         |                           |                               | 48.55                    | Envent                     |
|                      | 7/21/2009               | 78.07                           | 28.58                         |                           |                               | 49.49                    | Envent                     |
|                      | 11/4/2009               | 78.07                           | 30.36                         |                           |                               | 47.71                    | Kinder Morga               |
|                      | 2/4/2010                | 78.07                           | 29.20                         |                           |                               | 48.87                    | Kinder Morga               |
| MW-SF-13             | 8/14/2007               | 73.40                           | 22.98                         |                           |                               | 50.42                    | Geomatrix                  |
|                      | 8/21/2007               | 73.40                           | 23.11                         |                           |                               | 50.29<br>50.55           | Geomatrix                  |
|                      | 8/28/2007<br>9/11/2007  | 73.40<br>73.40                  | 22.85<br>23.10                |                           |                               | 50.55<br>50.30           | Stantec<br>Geomatrix       |
|                      | 10/5/2007               | 73.40<br>73.40                  | 23.10                         |                           |                               | 45.29                    | Geomatrix                  |
|                      | 11/2/2007               | 73.40                           | 25.43                         | 25.41                     | 0.02                          | 43.29                    | Geomatrix                  |
|                      | 11/12/2007              | 73.40                           | 23.70                         |                           |                               | 49.70                    | Stantec                    |
|                      | 12/21/2007              | 73.40                           | 24.45                         | 24.42                     | 0.03                          |                          | Geomatrix                  |
|                      | 8/15/2008               | 73.40                           | 27.38                         | 24.11                     | 3.27                          |                          | Envent                     |
|                      | 10/17/2008              | 73.40<br>73.40                  | 27.28                         | 24.33                     | 2.95                          |                          | Envent                     |
|                      |                         |                                 | 27.14                         | 24.26                     | 2.88                          |                          | Envent                     |



SFPP, L.P.
Defense Fuel Support Point Norwalk
Norwalk, California

| Well ID <sup>1</sup> | Date Gauged | Top of Well Casing<br>Elevation | Measured Depth to Groundwater | Measured Depth to Product | Apparent Product<br>Thickness | Groundwater<br>Elevation | Gauged By     |  |
|----------------------|-------------|---------------------------------|-------------------------------|---------------------------|-------------------------------|--------------------------|---------------|--|
|                      |             | (ft msl)                        | (ft bTOC)                     | (ft bTOC)                 | (feet)                        | (ft msl)                 |               |  |
| MW-SF-13             | 12/17/2008  | 73.40                           | 26.21                         | 24.70                     | 1.51                          |                          | Envent        |  |
|                      | 1/15/2009   | 73.40                           | 26.90                         | 24.80                     | 2.10                          |                          | Envent        |  |
|                      | 3/27/2009   | 73.40                           | 26.46                         | 25.49                     | 0.97                          |                          | Envent        |  |
|                      | 4/21/2009   | 73.40                           | 24.86                         | 24.78                     | 0.08                          |                          | Envent        |  |
|                      | 7/21/2009   | 73.40                           | 25.72                         | 25.48                     | 0.24                          |                          | Envent        |  |
|                      | 11/6/2009   | 73.40                           | 25.72                         |                           |                               | 47.68                    | Kinder Morgan |  |
|                      | 2/4/2010    | 73.40                           | 25.43                         | 25.30                     | 0.13                          |                          | Kinder Morgan |  |
| MW-SF-14             | 8/14/2007   | 78.16                           | 27.68                         |                           |                               | 50.48                    | Geomatrix     |  |
|                      | 8/21/2007   | 78.16                           | 27.60                         |                           |                               | 50.56                    | Geomatrix     |  |
|                      | 8/28/2007   | 78.16                           | 27.53                         |                           |                               | 50.63                    | Stantec       |  |
|                      | 9/11/2007   | 78.16                           | 27.66                         |                           |                               | 50.50                    | Geomatrix     |  |
|                      | 10/5/2007   | 78.16                           | 27.75                         |                           |                               | 50.41                    | Geomatrix     |  |
|                      | 11/2/2007   | 78.16                           | 29.83                         |                           |                               | 48.33                    | Geomatrix     |  |
|                      | 8/15/2008   | 78.16                           | 29.77                         | 29.24                     | 0.53                          |                          | Envent        |  |
|                      | 10/17/2008  | 78.16                           | 29.52                         | 29.50                     | 0.02                          |                          | Envent        |  |
|                      | 12/18/2008  | 78.16                           | 30.62                         |                           |                               | 47.54                    | Envent        |  |
|                      | 1/15/2009   | 78.16                           | 30.08                         |                           |                               | 48.08                    | Envent        |  |
|                      | 3/24/2009   | 78.16                           | 29.73                         |                           |                               | 48.43                    | Envent        |  |
|                      | 4/21/2009   | 78.16                           | 29.61                         |                           |                               | 48.55                    | Envent        |  |
|                      | 7/21/2009   | 78.16                           | 29.20                         |                           |                               | 48.96                    | Envent        |  |
|                      | 11/6/2009   | 78.16                           | 30.48                         |                           |                               | 47.68                    | Kinder Morgan |  |
|                      | 12/9/2009   | 78.16                           | 30.68                         |                           |                               | 47.48                    | Kinder Morgan |  |
|                      | 6/22/2010   | 78.16                           | 26.17                         |                           |                               | 51.99                    | Blaine Tech   |  |
| MW-SF-15             | 8/14/2007   | 78.27                           | 27.78                         | 27.75                     | 0.03                          |                          | Geomatrix     |  |
|                      | 8/21/2007   | 78.27                           | 27.69                         | 27.65                     | 0.04                          |                          | Geomatrix     |  |
|                      | 8/28/2007   | 78.27                           | 27.65                         | 27.61                     | 0.04                          |                          | Stantec       |  |
|                      | 9/11/2007   | 78.27                           | 27.62                         |                           |                               | 50.65                    | Geomatrix     |  |
|                      | 10/5/2007   | 78.27                           | 28.15                         |                           |                               | 50.12                    | Geomatrix     |  |
|                      | 11/2/2007   | 78.27                           | 30.45                         | 30.20                     | 0.25                          |                          | Geomatrix     |  |
|                      | 11/12/2007  | 78.27                           | 28.75                         |                           |                               | 49.52                    | Stantec       |  |
|                      | 8/15/2008   | 78.27                           | 30.12                         | 29.35                     | 0.77                          |                          | Envent        |  |
|                      | 10/17/2008  | 78.27                           | 30.80                         | 29.44                     | 1.36                          |                          | Envent        |  |
|                      | 10/21/2008  | 78.27                           | 30.80                         | 29.31                     | 1.49                          |                          | Envent        |  |
|                      | 12/18/2008  | 78.27                           | 32.11                         | 30.56                     | 1.55                          |                          | Envent        |  |
|                      | 1/15/2009   | 78.27                           | 31.75                         | 29.70                     | 2.05                          |                          | Envent        |  |
|                      | 3/24/2009   | 78.27                           | 30.32                         | 29.93                     | 0.39                          |                          | Envent        |  |
|                      | 4/21/2009   | 78.27                           | 29.96                         | 29.60                     | 0.36                          |                          | Envent        |  |
|                      | 7/21/2009   | 78.27                           | 30.45                         |                           |                               | 47.82                    | Envent        |  |
|                      | 11/4/2009   | 78.27                           | 31.10                         | 30.45                     | 0.36                          |                          | Kinder Morgan |  |
| MIN OF 10            | 12/9/2009   | 78.27                           | 30.87                         |                           |                               | 47.40                    | Kinder Morgan |  |
| MW-SF-16             | 8/14/2007   | 78.21                           | 27.68                         |                           |                               | 50.53                    | Geomatrix     |  |
|                      | 8/21/2007   | 78.21                           | 27.33                         |                           |                               | 50.88                    | Geomatrix     |  |
|                      | 8/28/2007   | 78.21                           | 27.51                         |                           |                               | 50.70                    | Stantec       |  |
|                      | 9/11/2007   | 78.21                           | 27.59                         |                           |                               | 50.62                    | Geomatrix     |  |
|                      | 10/5/2007   | 78.21                           | 28.10                         |                           |                               | 50.11                    | Geomatrix     |  |
|                      | 11/2/2007   | 78.21                           | 29.81                         |                           |                               | 48.40                    | Geomatrix     |  |
|                      | 11/12/2007  | 78.21                           | 28.40                         |                           |                               | 49.81                    | Stantec       |  |
|                      | 8/15/2008   | 78.21                           | 29.36                         |                           |                               | 48.85                    | Envent        |  |
|                      | 10/17/2008  | 78.21                           | 29.51                         |                           |                               | 48.70                    | Envent        |  |
|                      | 12/18/2008  | 78.21                           | 30.94                         |                           |                               | 47.27                    | Envent        |  |
|                      | 1/15/2009   | 78.21                           | 30.01                         | 30.00                     | 0.01                          |                          | Envent        |  |
|                      | 3/24/2009   | 78.21                           | 29.82                         |                           |                               | 48.39                    | Envent        |  |
|                      | 4/21/2009   | 78.21                           | 29.60                         |                           |                               | 48.61                    | Envent        |  |
|                      | 7/21/2009   | 78.21                           | 30.36                         |                           |                               | 47.85                    | Envent        |  |
|                      | 11/4/2009   | 78.21                           | 30.58                         |                           |                               | 47.63                    | Kinder Morgan |  |
|                      | 2/4/2010    | 78.21                           | 30.36                         |                           |                               | 47.85                    | Kinder Morgan |  |

Notes:

1. Wells equipped with a total fluids extraction or groundwater extraction pump are shown in bold font.

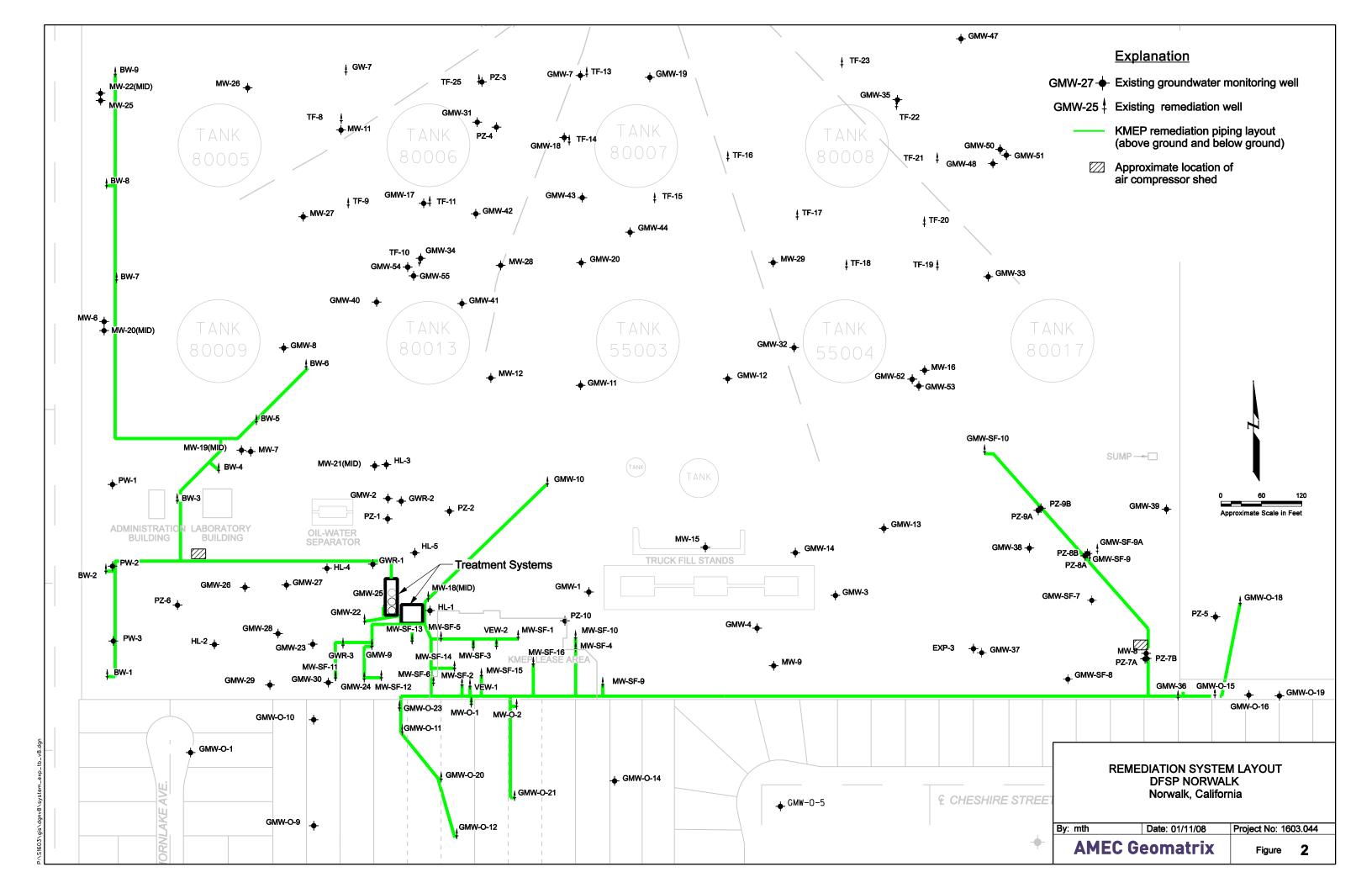
ft msl = feet above mean sea level based on the National Geodetic Vertical Datum of 1929.

ft bTOC = feet below top of casing.

--- = not detected or not applicable.



# FIGURES




BASEMAP MODIFIED FROM U.S.G.S. 7.5 MINUTE QUADRANGLE MAP LOS ALAMITOS 1964, CALIFORNIA. PHOTO-REVISED 1981. WHITTIER 1965, CALIFORNIA. PHOTO-REVISED 1981.

### SITE LOCATION MAP

DFSP NORWALK Norwalk, California

| By: kle | Date: 07/19/07 | Project No: 1603.044 |  |
|---------|----------------|----------------------|--|
| AMEC G  | eomatrix       | Figure 1             |  |





# APPENDIX A

LABORATORY ANALYTICAL RESULTS



GROUNDWATER





April 29, 2010

Alex Padilla
AMEC Geomatrix, Inc.
510 Superior Avenue
Suite 200
Newport Beach, CA 92663-3627

Subject: Calscience Work Order No.: 10-04-1426

Client Reference: SFPP - Norwalk Site

#### Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 04/20/2010 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely.

Calscience Environmental Laboratories, Inc.

Stephen Nowak Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501





AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200

Newport Beach, CA 92663-3627

Date Received: Work Order No: Preparation: Method: 04/20/10 10-04-1426 EPA 3510C EPA 8015B (M)

Project: SFPP - Norwalk Site

Page 1 of 1

| Client Sample Number                                                                                                            |         | Lab Samp<br>Number | le         | Date/Time<br>Collected | Matrix    | Instrument  | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |  |
|---------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|------------|------------------------|-----------|-------------|------------------|-----------------------|-------------|--|
| INF-04-20                                                                                                                       |         | 10-04-14           | 26-1-G     | 04/20/10<br>12:15      | Aqueous   | GC 27       | 04/21/10         | 04/23/10<br>20:53     | 100421B02   |  |
| Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag. |         |                    |            |                        |           |             |                  |                       |             |  |
| <u>Parameter</u>                                                                                                                | Result  | <u>RL</u>          | <u>MDL</u> |                        | <u>DF</u> | <u>Qual</u> | <u>Units</u>     |                       |             |  |
| TPH as Fuel Product                                                                                                             | 11000   | 500                | 430        | 1                      |           |             | ug/L             |                       |             |  |
| Surrogates:                                                                                                                     | REC (%) | Control Limits     | <u>MDL</u> |                        |           | <u>Qual</u> |                  |                       |             |  |
| Decachlorobiphenyl                                                                                                              | 114     | 68-140             |            |                        |           |             |                  |                       |             |  |
| Method Blank                                                                                                                    |         | 099-12-3           | 84-25      | N/A                    | Aqueous   | GC 27       | 04/21/10         | 04/23/10<br>20:00     | 100421B02   |  |

| Comment(s): -Results were ev | aluated to the MDL, | concentrations > | = to the MD | DL but < RL, if found, | are qualified v | vith a "J" flag. |
|------------------------------|---------------------|------------------|-------------|------------------------|-----------------|------------------|
| <u>Parameter</u>             | <u>Result</u>       | <u>RL</u>        | <u>MDL</u>  | <u>DF</u>              | <u>Qual</u>     | <u>Units</u>     |
| TPH as Fuel Product          | ND                  | 500              | 430         | 1                      |                 | ug/L             |
| Surrogates:                  | REC (%)             | Control Limits   | <u>MDL</u>  |                        | <u>Qual</u>     |                  |
| Decachlorobiphenyl           | 111                 | 68-140           |             |                        |                 |                  |

ML-Rep





AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200

Newport Beach, CA 92663-3627

Date Received: Work Order No: Preparation: Method: 04/20/10 10-04-1426 EPA 5030B EPA 8015B (M)

Project: SFPP - Norwalk Site

Page 1 of 1

| Client Sample Number                                                                                                            |                | Lab Samp<br>Number | le       | Date/Time<br>Collected | Matrix    | Instrument  | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |  |
|---------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|----------|------------------------|-----------|-------------|------------------|-----------------------|-------------|--|
| INF-04-20                                                                                                                       |                | 10-04-14           | 26-1-F   | 04/20/10<br>12:15      | Aqueous   | GC 25       | 04/23/10         | 04/24/10<br>02:13     | 100423B01   |  |
| Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag. |                |                    |          |                        |           |             |                  |                       |             |  |
| <u>Parameter</u>                                                                                                                | Result         | <u>RL</u>          | MDL      |                        | <u>DF</u> | <u>Qual</u> | <u>Units</u>     |                       |             |  |
| TPH as Gasoline                                                                                                                 | 10000          | 2000               | 960      | 20                     |           |             | ug/L             |                       |             |  |
| Surrogates:                                                                                                                     | <u>REC (%)</u> | Control Limits     | MDL      |                        |           | <u>Qual</u> |                  |                       |             |  |
| 1,4-Bromofluorobenzene                                                                                                          | 85             | 38-134             |          |                        |           |             |                  |                       |             |  |
| Method Blank                                                                                                                    |                | 099-12-2           | 47-4,128 | N/A                    | Aqueous   | GC 25       | 04/23/10         | 04/23/10<br>12:46     | 100423B01   |  |

| Comment(s): -Results were e        | valuated to the MDL, | concentrations >      | = to the MI      | DL but < RL, if found, | are qualified v | vith a "J" flag. |
|------------------------------------|----------------------|-----------------------|------------------|------------------------|-----------------|------------------|
| <u>Parameter</u>                   | Result               | <u>RL</u>             | MDL              | <u>DF</u>              | <u>Qual</u>     | <u>Units</u>     |
| TPH as Gasoline <u>Surrogates:</u> | ND<br><u>REC (%)</u> | 100<br>Control Limits | 48<br><u>MDL</u> | 1                      | <u>Qual</u>     | ug/L             |
| 1.4-Bromofluorobenzene             | 82                   | 38-134                |                  |                        |                 |                  |

RL - Rep

DF - Dilution Factor , Qual - Qualifiers





 AMEC Geomatrix, Inc.
 Date Received:
 04/20/10

 510 Superior Avenue
 Work Order No:
 10-04-1426

 Suite 200
 Preparation:
 EPA 5030B

 Newport Beach, CA 92663-3627
 Method:
 EPA 8260B

 Units:
 ug/L

Project: SFPP - Norwalk Site Page 1 of 2

| Client Sample Number        |                 |                   |            | Samp<br>umber | е           | Date/Time<br>Collected | Matrix           | Instrument      | Date<br>Prepar |                   | e/Time<br>alvzed | QC Bat     | ch ID |
|-----------------------------|-----------------|-------------------|------------|---------------|-------------|------------------------|------------------|-----------------|----------------|-------------------|------------------|------------|-------|
| INF-04-20                   |                 |                   |            | 04-142        | 6-1-B       | 04/20/10<br>12:15      | Aqueous          | GC/MS CC        | •              | 10 04             | /22/10<br>!0:16  | 100422     | L01   |
| Comment(s): -Results were e | evaluated to th | e MDL, co         | oncent     | rations       | >= to the N | MDL but < RL           | ., if found, are | e qualified wit | th a "J" flaç  | <b>J</b> .        |                  |            |       |
| <u>Parameter</u>            | Result          | <u>RL</u>         | <u>MDL</u> | DI            | <u>Qual</u> | <u>Parameter</u>       |                  |                 | Result         | <u>RL</u>         | <u>MDL</u>       | <u>DF</u>  | Qual  |
| Acetone                     | ND              | 2500              | 1000       | 5             | 0           | 1,1-Dichlor            | opropene         |                 | ND             | 50                | 13               | 50         |       |
| Benzene                     | 6000            | 25                | 14         | 5             | 0           | c-1,3-Dichl            | oropropene       |                 | ND             | 25                | 14               | 50         |       |
| Bromobenzene                | ND              | 50                | 17         | 5             | 0           | t-1,3-Dichlo           | ropropene        |                 | ND             | 25                | 18               | 50         |       |
| Bromochloromethane          | ND              | 50                | 35         | 5             | 0           | Ethylbenze             | ne               |                 | 44             | 50                | 11               | 50         | J     |
| Bromodichloromethane        | ND              | 50                | 17         | 5             | 0           | 2-Hexanon              | Э                |                 | ND             | 500               | 340              | 50         |       |
| Bromoform                   | ND              | 50                | 28         | 5             | 0           | Isopropylbe            | enzene           |                 | 18             | 50                | 11               | 50         | J     |
| Bromomethane                | ND              | 500               | 210        | 5             | 0           | p-Isopropyl            | toluene          |                 | ND             | 50                | 13               | 50         |       |
| 2-Butanone                  | ND              | 500               | 350        | 5             | 0           | Methylene              | Chloride         |                 | ND             | 500               | 130              | 50         |       |
| n-Butylbenzene              | ND              | 50                | 14         | 5             | 0           | 4-Methyl-2-            | Pentanone        |                 | ND             | 500               | 220              | 50         |       |
| sec-Butylbenzene            | ND              | 50                | 10         | 5             | 0           | Naphthaler             | е                |                 | ND             | 500               | 130              | 50         |       |
| tert-Butylbenzene           | ND              | 50                | 14         | 5             | 0           | n-Propylbe             | nzene            |                 | ND             | 50                | 40               | 50         |       |
| Carbon Disulfide            | ND              | 500               | 96         | 5             | 0           | Styrene                |                  |                 | ND             | 50                | 15               | 50         |       |
| Carbon Tetrachloride        | ND              | 25                | 21         | 5             | 0           | 1,1,1,2-Tet            | rachloroethar    | ne              | ND             | 50                | 18               | 50         |       |
| Chlorobenzene               | ND              | 50                | 11         | 5             | 0           | 1,1,2,2-Tet            | rachloroethar    | ne              | ND             | 50                | 22               | 50         |       |
| Chloroethane                | ND              | 250               | 64         | 5             | 0           | Tetrachloro            | ethene           |                 | ND             | 50                | 26               | 50         |       |
| Chloroform                  | ND              | 50                | 17         | 5             | 0           | Toluene                |                  |                 | 230            | 50                | 16               | 50         |       |
| Chloromethane               | ND              | 500               | 24         | 5             | 0           | 1,2,3-Trich            | lorobenzene      |                 | ND             | 50                | 15               | 50         |       |
| 2-Chlorotoluene             | ND              | 50                | 28         | 5             | 0           | 1,2,4-Trich            | lorobenzene      |                 | ND             | 50                | 24               | 50         |       |
| 4-Chlorotoluene             | ND              | 50                | 11         | 5             | 0           | 1,1,1-Trich            | loroethane       |                 | ND             | 50                | 22               | 50         |       |
| Dibromochloromethane        | ND              | 50                | 24         | 5             | 0           | 1,1,2-Trich            | loro-1,2,2-Tri   | fluoroethane    | ND             | 500               | 32               | 50         |       |
| 1,2-Dibromo-3-Chloropropane | ND              | 250               | 160        | 5             | 0           | 1,1,2-Trich            | loroethane       |                 | ND             | 50                | 27               | 50         |       |
| 1,2-Dibromoethane           | ND              | 50                | 23         | 5             | 0           | Trichloroetl           | nene             |                 | ND             | 50                | 15               | 50         |       |
| Dibromomethane              | ND              | 50                | 29         | 5             | 0           | Trichloroflu           | oromethane       |                 | ND             | 500               | 16               | 50         |       |
| 1,2-Dichlorobenzene         | ND              | 50                | 14         | 5             | 0           | 1,2,3-Trich            | loropropane      |                 | ND             | 250               | 67               | 50         |       |
| 1,3-Dichlorobenzene         | ND              | 50                | 14         | 5             | 0           | 1,2,4-Trime            | ethylbenzene     |                 | 17             | 50                | 12               | 50         | J     |
| 1,4-Dichlorobenzene         | ND              | 50                | 11         | 5             | 0           | 1,3,5-Trime            | ethylbenzene     |                 | ND             | 50                | 12               | 50         |       |
| Dichlorodifluoromethane     | ND              | 50                | 25         | 5             | 0           | Vinyl Aceta            | te               |                 | ND             | 500               | 350              | 50         |       |
| 1,1-Dichloroethane          | ND              | 50                | 19         | 5             | 0           | Vinyl Chlor            | de               |                 | ND             | 25                | 16               | 50         |       |
| 1,2-Dichloroethane          | ND              | 25                | 16         | 5             | 0           | p/m-Xylene             |                  |                 | 130            | 50                | 23               | 50         |       |
| 1,1-Dichloroethene          | ND              | 50                | 20         | 5             | 0           | o-Xylene               |                  |                 | 44             | 50                | 12               | 50         | J     |
| c-1,2-Dichloroethene        | ND              | 50                | 24         | 5             | 0           | Methyl-t-Bu            | ityl Ether (MT   | BE)             | 130            | 50                | 15               | 50         |       |
| t-1,2-Dichloroethene        | ND              | 50                | 20         | 5             | 0           | Diisopropyl            | Ether (DIPE      | )               | 48             | 100               | 15               | 50         | J     |
| 1,2-Dichloropropane         | ND              | 50                | 19         | 5             | 0           | Ethyl-t-Buty           | l Ether (ETB     | E)              | ND             | 100               | 13               | 50         |       |
| 1,3-Dichloropropane         | ND              | 50                | 19         | 5             | 0           | Tert-Amyl-I            | Methyl Ether     | (TAME)          | ND             | 100               | 14               | 50         |       |
| 2,2-Dichloropropane         | ND              | 50                | 23         | 5             | 0           | Ethanol                |                  |                 | ND             | 5000              | 2500             | 50         |       |
| Surrogates:                 | <u>REC (%)</u>  | Control<br>Limits | <u>(</u>   | <u>Qual</u>   |             | <u>Surrogates</u>      |                  |                 | REC (%)        | Control<br>Limits | Q                | <u>ual</u> |       |
| Dibromofluoromethane        | 123             | 80-132            |            |               |             | 1,2-Dichlor            | oethane-d4       |                 | 133            | 80-141            |                  |            |       |
| Toluene-d8                  | 101             | 80-120            |            |               |             | 1,4-Bromof             | luorobenzene     | •               | 91             | 76-120            |                  |            |       |

RL - Reporting Limit ,

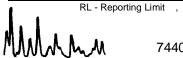
DF - Dilution Factor , Qual - Qualifiers





 AMEC Geomatrix, Inc.
 Date Received:
 04/20/10

 510 Superior Avenue
 Work Order No:
 10-04-1426


 Suite 200
 Preparation:
 EPA 5030B

 Newport Beach, CA 92663-3627
 Method:
 EPA 8260B

 Units:
 ug/L

Project: SFPP - Norwalk Site Page 2 of 2

| Client Sample Number        |                 |                   | Lab Sa<br>Num |           |          | Date/Time<br>Collected | Matrix          | Instrument     | Date<br>Prepar |                   | e/Time<br>alyzed | QC Bat     | ch ID |
|-----------------------------|-----------------|-------------------|---------------|-----------|----------|------------------------|-----------------|----------------|----------------|-------------------|------------------|------------|-------|
| Method Blank                |                 |                   | 099-14        |           | 513      | N/A                    | Aqueous         | GC/MS CC       | •              | 10 04/            | 22/10<br>2:11    | 100422     | 2L01  |
| Comment(s): -Results were   | evaluated to th | ne MDL, co        | oncentrati    | ons >=    | to the N | MDL but < RL           | , if found, are | e qualified wi | th a "J" flag  | j.                |                  |            |       |
| <u>Parameter</u>            | Result          | <u>RL</u>         | <u>MDL</u>    | DF        | Qual     | <u>Parameter</u>       |                 |                | Result         | <u>RL</u>         | MDL              | <u>DF</u>  | Qual  |
| Acetone                     | ND              | 50                | 20            | 1         |          | 1,1-Dichlor            | opropene        |                | ND             | 1.0               | 0.26             | 1          |       |
| Benzene                     | ND              | 0.50              | 0.28          | 1         |          | c-1,3-Dichl            | oropropene      |                | ND             | 0.50              | 0.28             | 1          |       |
| Bromobenzene                | ND              | 1.0               | 0.33          | 1         |          | t-1,3-Dichlo           | ropropene       |                | ND             | 0.50              | 0.36             | 1          |       |
| Bromochloromethane          | ND              | 1.0               | 0.69          | 1         |          | Ethylbenze             | ne              |                | ND             | 1.0               | 0.22             | 1          |       |
| Bromodichloromethane        | ND              | 1.0               | 0.33          | 1         |          | 2-Hexanon              | Э               |                | ND             | 10                | 6.9              | 1          |       |
| Bromoform                   | ND              | 1.0               | 0.55          | 1         |          | Isopropylbe            | enzene          |                | ND             | 1.0               | 0.23             | 1          |       |
| Bromomethane                | ND              | 10                | 4.3           | 1         |          | p-Isopropyl            | toluene         |                | ND             | 1.0               | 0.26             | 1          |       |
| 2-Butanone                  | ND              | 10                | 6.9           | 1         |          | Methylene (            | Chloride        |                | ND             | 10                | 2.6              | 1          |       |
| n-Butylbenzene              | ND              | 1.0               | 0.28          | 1         |          | 4-Methyl-2-            | Pentanone       |                | ND             | 10                | 4.4              | 1          |       |
| sec-Butylbenzene            | ND              | 1.0               | 0.20          | 1         |          | Naphthalen             | е               |                | ND             | 10                | 2.5              | 1          |       |
| tert-Butylbenzene           | ND              | 1.0               | 0.28          | 1         |          | n-Propylbei            | nzene           |                | ND             | 1.0               | 0.79             | 1          |       |
| Carbon Disulfide            | ND              | 10                | 1.9           | 1         |          | Styrene                |                 |                | ND             | 1.0               | 0.30             | 1          |       |
| Carbon Tetrachloride        | ND              | 0.50              | 0.43          | 1         |          | 1,1,1,2-Tet            | rachloroethar   | ne             | ND             | 1.0               | 0.35             | 1          |       |
| Chlorobenzene               | ND              | 1.0               | 0.22          | 1         |          | 1,1,2,2-Tet            | rachloroethar   | ne             | ND             | 1.0               | 0.44             | 1          |       |
| Chloroethane                | ND              | 5.0               | 1.3           | 1         |          | Tetrachloro            | ethene          |                | ND             | 1.0               | 0.51             | 1          |       |
| Chloroform                  | ND              | 1.0               | 0.33          | 1         |          | Toluene                |                 |                | ND             | 1.0               | 0.33             | 1          |       |
| Chloromethane               | ND              | 10                | 0.49          | 1         |          | 1,2,3-Trich            | lorobenzene     |                | 0.31           | 1.0               | 0.31             | 1          | J     |
| 2-Chlorotoluene             | ND              | 1.0               | 0.55          | 1         |          | 1,2,4-Trich            | lorobenzene     |                | ND             | 1.0               | 0.49             | 1          |       |
| 4-Chlorotoluene             | ND              | 1.0               | 0.21          | 1         |          | 1,1,1-Trich            | loroethane      |                | ND             | 1.0               | 0.45             | 1          |       |
| Dibromochloromethane        | ND              | 1.0               | 0.48          | 1         |          | 1,1,2-Trich            | loro-1,2,2-Tri  | fluoroethane   | ND             | 10                | 0.64             | 1          |       |
| 1,2-Dibromo-3-Chloropropane | ND              | 5.0               | 3.1           | 1         |          | 1,1,2-Trich            | loroethane      |                | ND             | 1.0               | 0.54             | 1          |       |
| 1,2-Dibromoethane           | ND              | 1.0               | 0.47          | 1         |          | Trichloroeth           | nene            |                | ND             | 1.0               | 0.30             | 1          |       |
| Dibromomethane              | ND              | 1.0               | 0.59          | 1         |          | Trichloroflu           | oromethane      |                | ND             | 10                | 0.31             | 1          |       |
| 1,2-Dichlorobenzene         | ND              | 1.0               | 0.27          | 1         |          | 1,2,3-Trich            | loropropane     |                | ND             | 5.0               | 1.3              | 1          |       |
| 1,3-Dichlorobenzene         | ND              | 1.0               | 0.28          | 1         |          | 1,2,4-Trime            | ethylbenzene    |                | ND             | 1.0               | 0.24             | 1          |       |
| 1,4-Dichlorobenzene         | ND              | 1.0               | 0.21          | 1         |          | 1,3,5-Trime            | ethylbenzene    |                | ND             | 1.0               | 0.23             | 1          |       |
| Dichlorodifluoromethane     | ND              | 1.0               | 0.49          | 1         |          | Vinyl Aceta            | te              |                | ND             | 10                | 7.1              | 1          |       |
| 1,1-Dichloroethane          | ND              | 1.0               | 0.37          | 1         |          | Vinyl Chlori           | de              |                | ND             | 0.50              | 0.33             | 1          |       |
| 1,2-Dichloroethane          | ND              | 0.50              | 0.31          | 1         |          | p/m-Xylene             |                 |                | ND             | 1.0               | 0.45             | 1          |       |
| 1,1-Dichloroethene          | ND              | 1.0               | 0.40          | 1         |          | o-Xylene               |                 |                | ND             | 1.0               | 0.24             | 1          |       |
| c-1,2-Dichloroethene        | ND              | 1.0               | 0.49          | 1         |          | Methyl-t-Bu            | ityl Ether (MT  | BE)            | ND             | 1.0               | 0.30             | 1          |       |
| t-1,2-Dichloroethene        | ND              | 1.0               | 0.40          | 1         |          | Diisopropyl            | Ether (DIPE     | )              | ND             | 2.0               | 0.31             | 1          |       |
| 1,2-Dichloropropane         | ND              | 1.0               | 0.38          | 1         |          | Ethyl-t-Buty           | l Ether (ETB    | E)             | ND             | 2.0               | 0.27             | 1          |       |
| 1,3-Dichloropropane         | ND              | 1.0               | 0.38          | 1         |          | Tert-Amyl-I            | Methyl Ether    | (TAME)         | ND             | 2.0               | 0.28             | 1          |       |
| 2,2-Dichloropropane         | ND              | 1.0               | 0.46          | 1         |          | Ethanol                |                 |                | ND             | 100               | 50               | 1          |       |
| Surrogates:                 | REC (%)         | Control<br>Limits | Qua           | <u>al</u> |          | <u>Surrogates</u>      | _               |                | REC (%)        | Control<br>Limits | <u>Q</u>         | <u>ual</u> |       |
| Dibromofluoromethane        | 116             | 80-132            |               |           |          | 1,2-Dichlor            | oethane-d4      |                | 122            | 80-141            |                  |            |       |
| Toluene-d8                  | 102             | 80-120            |               |           |          | *                      | luorobenzene    | Э              | 91             | 76-120            |                  |            |       |





## **Quality Control - Spike/Spike Duplicate**



AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200

Newport Beach, CA 92663-3627

Date Received: Work Order No: Preparation: Method: 04/20/10 10-04-1426 EPA 5030B EPA 8015B (M)

### Project SFPP - Norwalk Site

| Quality Control Sample ID | Matrix  | Matrix Instrument |          | Date<br>Analyzed | MS/MSD Batch<br>Number |
|---------------------------|---------|-------------------|----------|------------------|------------------------|
| 10-04-1682-1              | Aqueous | GC 25             | 04/23/10 | 04/23/10         | 100423S01              |
| <u>Parameter</u>          | MS %REC | MSD %REC          | %REC CL  | RPD RPD CL       | <u>Qualifiers</u>      |
| TPH as Gasoline           | 92      | 92                | 68-122   | 1 0-18           |                        |

MM.\_\_\_\_

RPD - Relative Percent Difference , CL - Control Limit



## **Quality Control - Spike/Spike Duplicate**



AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200

Newport Beach, CA 92663-3627

Date Received: Work Order No: Preparation: Method: 04/20/10 10-04-1426 EPA 5030B EPA 8260B

Project SFPP - Norwalk Site

| Quality Control Sample ID     | Matrix  | Instrument  | Date<br>Prepared |            | Date<br>Analyzed | MS/MSD Batch<br>Number |
|-------------------------------|---------|-------------|------------------|------------|------------------|------------------------|
| 10-04-1438-2                  | Aqueou  | is GC/MS CC | 04/22/10         | 04/22/10   |                  | 100422801              |
|                               |         |             |                  |            |                  |                        |
| <u>Parameter</u>              | MS %REC | MSD %REC    | %REC CL          | <u>RPD</u> | RPD CL           | Qualifiers             |
| Benzene                       | 99      | 100         | 72-120           | 1          | 0-20             |                        |
| Carbon Tetrachloride          | 102     | 106         | 63-135           | 4          | 0-20             |                        |
| Chlorobenzene                 | 99      | 100         | 80-120           | 0          | 0-20             |                        |
| 1,2-Dibromoethane             | 98      | 96          | 80-120           | 2          | 0-20             |                        |
| 1,2-Dichlorobenzene           | 88      | 91          | 80-120           | 3          | 0-20             |                        |
| 1,1-Dichloroethene            | 107     | 112         | 60-132           | 4          | 0-24             |                        |
| Ethylbenzene                  | 96      | 96          | 78-120           | 1          | 0-20             |                        |
| Toluene                       | 104     | 102         | 74-122           | 2          | 0-20             |                        |
| Trichloroethene               | 105     | 107         | 69-120           | 2          | 0-20             |                        |
| Vinyl Chloride                | 91      | 99          | 58-130           | 8          | 0-20             |                        |
| Methyl-t-Butyl Ether (MTBE)   | 83      | 85          | 72-126           | 2          | 0-21             |                        |
| Tert-Butyl Alcohol (TBA)      | 127     | 127         | 72-126           | 0          | 0-20             | 3                      |
| Diisopropyl Ether (DIPE)      | 105     | 107         | 71-137           | 2          | 0-23             |                        |
| Ethyl-t-Butyl Ether (ETBE)    | 78      | 82          | 74-128           | 5          | 0-20             |                        |
| Tert-Amyl-Methyl Ether (TAME) | 78      | 80          | 76-124           | 2          | 0-20             |                        |
| Ethanol                       | 120     | 113         | 35-167           | 6          | 0-48             |                        |

MMM\_





AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Newport Beach, CA 92663-3627 Date Received: Work Order No: Preparation: Method:

10-04-1426 EPA 3510C EPA 8015B (M)

N/A

Project: SFPP - Norwalk Site

| Quality Control Sample ID | Matrix  | Instrument | Date<br>Prepared     | Date<br>Analyze | ed         | LCS/LCSD Batcl<br>Number | h          |
|---------------------------|---------|------------|----------------------|-----------------|------------|--------------------------|------------|
| 099-12-384-25             | Aqueous | GC 27      | 04/21/10             | 04/23/10        | )          | 100421B02                |            |
| <u>Parameter</u>          | LCS %   | 6REC LCSD  | <u>%REC</u> <u>%</u> | REC CL          | <u>RPD</u> | RPD CL                   | Qualifiers |
| TPH as Fuel Product       | 94      | 96         |                      | 75-117          | 2          | 0-13                     |            |

MMM\_





AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Newport Beach, CA 92663-3627 Date Received: Work Order No: Preparation: Method: N/A 10-04-1426 EPA 5030B EPA 8015B (M)

Project: SFPP - Norwalk Site

| Quality Control Sample ID | Matrix  | Instrument        | Date<br>Prepared | Dat<br>Analy |            | LCS/LCSD Batc<br>Number | h          |
|---------------------------|---------|-------------------|------------------|--------------|------------|-------------------------|------------|
| 099-12-247-4,128          | Aqueous | GC 25             | 04/23/10         | 04/23/       | 10         | 100423B01               |            |
| <u>Parameter</u>          | LCS %   | <u> 6REC LCSD</u> | %REC %           | %REC CL      | <u>RPD</u> | RPD CL                  | Qualifiers |
| TPH as Gasoline           | 92      | 90                |                  | 78-120       | 2          | 0-10                    |            |

RPD - Rel





AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Newport Beach, CA 92663-3627 Date Received: Work Order No: Preparation: Method:

10-04-1426 **EPA 5030B** EPA 8260B

N/A

Project: SFPP - Norwalk Site

| Quality Control Sample ID     | Matrix   | Matrix Instrument |         | Date<br>Analyzed  |            | LCS/LCSD<br>Numbe |                   |
|-------------------------------|----------|-------------------|---------|-------------------|------------|-------------------|-------------------|
| 099-14-001-513                | Aqueous  | Aqueous GC/MS CC  |         | 04/22/10 04/22/10 |            | 100422L           | 01                |
| <u>Parameter</u>              | LCS %REC | LCSD %REC         | %REC CL | ME CL             | <u>RPD</u> | RPD CL            | <u>Qualifiers</u> |
| Benzene                       | 98       | 99                | 80-122  | 73-129            | 1          | 0-20              |                   |
| Carbon Tetrachloride          | 104      | 101               | 68-140  | 56-152            | 3          | 0-20              |                   |
| Chlorobenzene                 | 99       | 99                | 80-120  | 73-127            | 0          | 0-20              |                   |
| 1,2-Dibromoethane             | 97       | 97                | 80-121  | 73-128            | 0          | 0-20              |                   |
| 1,2-Dichlorobenzene           | 92       | 92                | 80-120  | 73-127            | 1          | 0-20              |                   |
| 1,1-Dichloroethene            | 109      | 110               | 72-132  | 62-142            | 1          | 0-25              |                   |
| Ethylbenzene                  | 96       | 95                | 80-126  | 72-134            | 1          | 0-20              |                   |
| Toluene                       | 101      | 101               | 80-121  | 73-128            | 0          | 0-20              |                   |
| Trichloroethene               | 102      | 103               | 80-123  | 73-130            | 1          | 0-20              |                   |
| Vinyl Chloride                | 95       | 99                | 67-133  | 56-144            | 4          | 0-20              |                   |
| Methyl-t-Butyl Ether (MTBE)   | 87       | 86                | 75-123  | 67-131            | 1          | 0-20              |                   |
| Tert-Butyl Alcohol (TBA)      | 118      | 123               | 75-123  | 67-131            | 4          | 0-20              |                   |
| Diisopropyl Ether (DIPE)      | 106      | 104               | 71-131  | 61-141            | 1          | 0-20              |                   |
| Ethyl-t-Butyl Ether (ETBE)    | 84       | 81                | 76-124  | 68-132            | 3          | 0-20              |                   |
| Tert-Amyl-Methyl Ether (TAME) | 80       | 79                | 80-123  | 73-130            | 1          | 0-20              | ME                |
| Ethanol                       | 118      | 138               | 61-139  | 48-152            | 16         | 0-27              |                   |

Total number of LCS compounds: 16 Total number of ME compounds: 1 Total number of ME compounds allowed: LCS ME CL validation result: Pass





## **Glossary of Terms and Qualifiers**



Work Order Number: 10-04-1426

| <u>Qualifier</u> | <u>Definition</u>                                                                                                                                                                                                                                      |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| *                | See applicable analysis comment.                                                                                                                                                                                                                       |
| <                | Less than the indicated value.                                                                                                                                                                                                                         |
| >                | Greater than the indicated value.                                                                                                                                                                                                                      |
| 1                | Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.                                                                                               |
| 2                | Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.                             |
| 3                | Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.    |
| 4                | The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.                                                                              |
| 5                | The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification. |
| В                | Analyte was present in the associated method blank.                                                                                                                                                                                                    |
| E                | Concentration exceeds the calibration range.                                                                                                                                                                                                           |
| J                | Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.                                                                                                        |
| ME               | LCS Recovery Percentage is within LCS ME Control Limit range.                                                                                                                                                                                          |
| ND               | Parameter not detected at the indicated reporting limit.                                                                                                                                                                                               |
| Q                | Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.                                                                          |
| X                | % Recovery and/or RPD out-of-range.                                                                                                                                                                                                                    |
| Z                | Analyte presence was not confirmed by second column or GC/MS analysis.                                                                                                                                                                                 |
|                  | Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.                                                                                                                                 |
|                  |                                                                                                                                                                                                                                                        |

75 **CHAIN OF CUSTODY RECORD** (Temp. as sampled\*) Time: Comments Temperature\* = LAB USE ONLY Temperature\* = 9 04-20-1 QUOTE NO. 0 P.O. NO.: 2 Monthly REQUESTED ANALYSIS Date: Da(e: DATE: PAGE: TAT AH AS no muinələS × × Hg,Cr(VI),Cu(1669,7199,6020)  $\mathcal{L}_{j}$ × Phenolics (420.1) ح × Total Suspended Solids (160.2) × (6.03f) sbilos eldsettles × W#BE;BTEX;1,1-DCA;1,2-DCA;MEK(82608) SFPP - Norwalk Site anny × LbH-9 (C5-C14 Only) (8015M) × (1.614) essene & liO James Dye SAMPLER(S): (SIGNAT) AOCs' Enli List (8260B) × (M2108) qì-H9T Received by: (Signature) Received by: (Signature) Received by: (Signature) × (M2108) g - H9T 7 lames dye@kindermorgan.com 10 DAX "J" flags required/Use lowest possible detection limit - all methods. ≶ ≶ MAT. 1215 12/B/ Ħ E-MAIL Report to A. Padilla at Geomatrix, cc: KMEP Direct Bill KMEP/SFPP - Steve Defibaugh-ref. AFE# 81195 5 DAYS SAMPLING TEL: (714) 895-5494 . FAX: (714) 894-7501 04-20#d Kinder Morgan Energy Partners, Attn: Steve Defibaugh 11-02-13 ARCHIVE SAMPLES UNTIL DATE **GARDEN GROVE, CA 92841-1432** 72 HR 714-560-4601 7440 LINCOLN WAY LOCATION/ DESCRIPTION 48HR SAME DAY 24 HR 48HR Effluent Influent ΕŘ ☐ RWQCB REPORTING ☐ 1100 Town & Country Road  $\mathcal{I}$ \* INF-64-30 2 EFF. 04' 2 aboratories, Inc. 714-560-4802 SAMPLE ID gerby: (Signature) Relinquished by: (Signature) Relinquished by: (Signerfige **Orange, CA 92868** alscience nvironmental Revised: 07/23/09 TURNAROUND TIME LAB USE ONLY

Calscience
Environmental
Laboratories, Inc.

WORK ORDER #: 10-04- ☐ ☐ ☐ ☐

SAMPLE RECEIPT FORM

Cooler <u>/</u> of <u>/</u>

| CLIENT: KMEP                                                                                                                                                                                                                                                                                                                                                                        | DATE:_             | 04/20            | /10_                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|-------------------------------|
| TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C - 6.0 °C, not froz  Temperature                                                                                                                                                                                                                                                                                                  | Blank day of sampl |                  | e<br>:_b\_                    |
| CUSTODY SEALS INTACT:  □ Cooler □ □ No (Not Intact) ✓ Not Presen □ Sample □ No (Not Intact) ✓ Not Presen                                                                                                                                                                                                                                                                            |                    | Initia<br>Initia | 1: <u>12.L</u><br>1: <u>G</u> |
| SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples  COC document(s) received complete                                                                                                                                                                                                                                                                       |                    | No               | <b>N/A</b>                    |
| ☐ Collection date/time, matrix, and/or # of containers logged in based on sample labe ☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.  Sampler's name indicated on COC                                                                                                                                                                                    |                    |                  |                               |
| Sample container label(s) consistent with COC                                                                                                                                                                                                                                                                                                                                       | 🗗                  |                  |                               |
| Proper containers and sufficient volume for analyses requested  Analyses received within holding time                                                                                                                                                                                                                                                                               | 🗹                  |                  |                               |
| Proper preservation noted on COC or sample container                                                                                                                                                                                                                                                                                                                                |                    |                  |                               |
| Volatile analysis container(s) free of headspace  Tedlar bag(s) free of condensation                                                                                                                                                                                                                                                                                                |                    |                  |                               |
| CONTAINER TYPE: Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve() □EnCol Water: □VOA ☑VOAh □VOAna₂ □125AGB □125AGBh □125AGB                                                                                                                                                                                                                                                                 |                    |                  |                               |
| □500AGB ☑500AGJ ☑500AGJs □250AGB □250CGB □250CGE □250PB ☑250PBn □125PB □125PBznna □100PJ □100PJna₂ □_                                                                                                                                                                                                                                                                               | □                  |                  |                               |
| Air: Tedlar <sup>®</sup> Summa <sup>®</sup> Other: Trip Blank Lot#:  Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag  Preservative: h: HCL n: HNO <sub>3</sub> na <sub>2</sub> :Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> na: NaOH p: H <sub>3</sub> PO <sub>4</sub> s: H <sub>2</sub> SO <sub>4</sub> znna: ZnAc <sub>2</sub> +NaOH | E: Envelope        | Reviewed by      | : WSC                         |





May 21, 2010

Alex Padilla AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Newport Beach, CA 92663-3627

Subject: Calscience Work Order No.: 10-05-1198

Client Reference: SFPP - Norwalk Site

#### Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 5/14/2010 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc.

Stephen Nowak Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501





AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200

Newport Beach, CA 92663-3627

Date Received: Work Order No: Preparation: Method:

05/14/10 10-05-1198 **EPA 3510C** EPA 8015B (M)

Project: SFPP - Norwalk Site

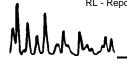
Page 1 of 1

| Client Sample Number | Lab Sample<br>Number | Date/Time<br>Collected | Matrix  | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|----------------------|----------------------|------------------------|---------|------------|------------------|-----------------------|-------------|
| INF-5-14             | 10-05-1198-1-G       | 05/14/10<br>12:45      | Aqueous | GC 48      | 05/18/10         | 05/19/10<br>00:29     | 100518B06   |

Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

-Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

<u>Parameter</u> Result RL <u>MDL</u> DF Qual <u>Units</u> TPH as Fuel Product 2100 500 1 ug/L 430


Surrogates: **REC (%)** Control Limits **MDL** Qual

Decachlorobiphenyl 77 68-140

|   | Method Blank                                          | 099-12-384-26          | N/A         | Aqueous           | GC 48          | 05/18/10      | 05/18/10<br>23:43 | 100518B06 |  |
|---|-------------------------------------------------------|------------------------|-------------|-------------------|----------------|---------------|-------------------|-----------|--|
| _ | Comment(s): -Results were evaluated to the MDL, conce | entrations >= to the M | 1DL but < I | RL, if found, are | qualified with | n a "J" flag. |                   |           |  |

<u>DF</u> **Parameter** Result <u>RL</u> **MDL** Qual **Units** TPH as Fuel Product ND 500 430 ug/L Surrogates: **REC (%) Control Limits** MDL Qual

Decachlorobiphenyl 113 68-140



DF - Dilution Factor





AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Newport Beach, CA 92663-3627 Date Received: Work Order No: Preparation: Method: 05/14/10 10-05-1198 EPA 5030B EPA 8015B (M)

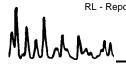
Project: SFPP - Norwalk Site

Page 1 of 1

| Client Sample Number | Lab Sample<br>Number | Date/Time<br>Collected | Matrix  | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|----------------------|----------------------|------------------------|---------|------------|------------------|-----------------------|-------------|
| INF-5-14             | 10-05-1198-1-D       | 05/14/10<br>12:45      | Aqueous | GC 1       | 05/15/10         | 05/16/10<br>15:11     | 100515B02   |

Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard.

Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.


-Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

<u>Parameter</u> RL <u>MDL</u> DF Qual Result <u>Units</u> TPH as Gasoline 8500 2000 ug/L 960 20 Control Limits Qual Surrogates: **REC (%)** MDL

1,4-Bromofluorobenzene 86 38-134

| 08:16 | Method Blank | 099-12-247-4,205 | N/A | Aqueous | GC 1 | 05/15/10 | 05/16/10<br>08:16 | 100515B02 |
|-------|--------------|------------------|-----|---------|------|----------|-------------------|-----------|
|-------|--------------|------------------|-----|---------|------|----------|-------------------|-----------|

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag. Result RL **MDL** <u>DF</u> TPH as Gasoline ND 100 48 1 ug/L Surrogates: **REC (%)** Control Limits MDL Qual 84 1,4-Bromofluorobenzene 38-134



DF - Dilution Factor , Qual - Qualifiers



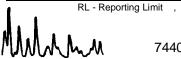


AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200

Newport Beach, CA 92663-3627

Project: SFPP - Norwalk Site

Date Received:
Work Order No:
Preparation:
Method:


10-05-1198 EPA 5030B

05/14/10

Method: EPA 8260B Units: ug/L

Page 1 of 2

| Client Sample Number        |                 |                   |            | ample<br>nber |          | Date/Time<br>Collected | Matrix           | Instrument     | Date<br>Prepa |                  | ate/Time<br>nalyzed | QC Bat     | ch ID |
|-----------------------------|-----------------|-------------------|------------|---------------|----------|------------------------|------------------|----------------|---------------|------------------|---------------------|------------|-------|
| INF-5-14                    |                 |                   | 10-05      | -1198-1       | -A       | 05/14/10<br>12:45      | Aqueous          | GC/MS LL       | 05/20/        | 10 0             | 5/21/10<br>00:35    | 100520     | L01   |
| Comment(s): -Results were   | evaluated to th | ne MDL, c         | oncentra   | tions >=      | to the N | MDL but < RL           | ., if found, are | e qualified wi | th a "J" fla  | g.               |                     |            |       |
| <u>Parameter</u>            | <u>Result</u>   | <u>RL</u>         | <u>MDL</u> | DF            | Qual     | <u>Parameter</u>       |                  |                | Result        | <u>RL</u>        | <u>MDL</u>          | <u>DF</u>  | Qual  |
| Acetone                     | ND              | 1000              | 400        | 20            |          | 1,1-Dichlor            | opropene         |                | ND            | 20               | 5.1                 | 20         |       |
| Benzene                     | 3600            | 10                | 5.7        | 20            |          | c-1,3-Dichl            | oropropene       |                | ND            | 10               | 5.7                 | 20         |       |
| Bromobenzene                | ND              | 20                | 6.7        | 20            |          | t-1,3-Dichlo           | oropropene       |                | ND            | 10               | 7.2                 | 20         |       |
| Bromochloromethane          | ND              | 20                | 14         | 20            |          | Ethylbenze             | ne               |                | 67            | 20               | 4.4                 | 20         |       |
| Bromodichloromethane        | ND              | 20                | 6.6        | 20            |          | 2-Hexanon              | е                |                | ND            | 200              | 140                 | 20         |       |
| Bromoform                   | ND              | 20                | 11         | 20            |          | Isopropylbe            | enzene           |                | 14            | 20               | 4.5                 | 20         | J     |
| Bromomethane                | ND              | 200               | 86         | 20            |          | p-Isopropyl            | toluene          |                | ND            | 20               | 5.2                 | 20         |       |
| 2-Butanone                  | ND              | 200               | 140        | 20            |          | Methylene              | Chloride         |                | ND            | 200              | 52                  | 20         |       |
| n-Butylbenzene              | 9.2             | 20                | 5.5        | 20            | J        | 4-Methyl-2-            | Pentanone        |                | ND            | 200              | 88                  | 20         |       |
| sec-Butylbenzene            | ND              | 20                | 4.1        | 20            |          | Naphthaler             | ne               |                | 110           | 200              | 51                  | 20         | J     |
| tert-Butylbenzene           | ND              | 20                | 5.5        | 20            |          | n-Propylbe             | nzene            |                | 28            | 20               | 16                  | 20         |       |
| Carbon Disulfide            | ND              | 200               | 38         | 20            |          | Styrene                |                  |                | ND            | 20               | 6.0                 | 20         |       |
| Carbon Tetrachloride        | ND              | 10                | 8.5        | 20            |          | 1,1,1,2-Tet            | rachloroethar    | ne             | ND            | 20               | 7.0                 | 20         |       |
| Chlorobenzene               | ND              | 20                | 4.4        | 20            |          | 1,1,2,2-Tet            | rachloroethar    | ne             | ND            | 20               | 8.8                 | 20         |       |
| Chloroethane                | ND              | 100               | 26         | 20            |          | Tetrachloro            | ethene           |                | ND            | 20               | 10                  | 20         |       |
| Chloroform                  | ND              | 20                | 6.6        | 20            |          | Toluene                |                  |                | 380           | 20               | 6.5                 | 20         |       |
| Chloromethane               | ND              | 200               | 9.7        | 20            |          | 1,2,3-Trich            | lorobenzene      |                | ND            | 20               | 6.1                 | 20         |       |
| 2-Chlorotoluene             | ND              | 20                | 11         | 20            |          | 1,2,4-Trich            | lorobenzene      |                | ND            | 20               | 9.7                 | 20         |       |
| 4-Chlorotoluene             | ND              | 20                | 4.2        | 20            |          | 1,1,1-Trich            | loroethane       |                | ND            | 20               | 9.0                 | 20         |       |
| Dibromochloromethane        | ND              | 20                | 9.7        | 20            |          | 1,1,2-Trich            | loro-1,2,2-Tri   | fluoroethane   | ND            | 200              | 13                  | 20         |       |
| 1,2-Dibromo-3-Chloropropane | ND              | 100               | 62         | 20            |          | 1,1,2-Trich            | loroethane       |                | ND            | 20               | 11                  | 20         |       |
| 1,2-Dibromoethane           | ND              | 20                | 9.3        | 20            |          | Trichloroet            | nene             |                | ND            | 20               | 6.1                 | 20         |       |
| Dibromomethane              | ND              | 20                | 12         | 20            |          | Trichloroflu           | oromethane       |                | ND            | 200              | 6.2                 | 20         |       |
| 1,2-Dichlorobenzene         | ND              | 20                | 5.4        | 20            |          | 1,2,3-Trich            | loropropane      |                | ND            | 100              | 27                  | 20         |       |
| 1,3-Dichlorobenzene         | ND              | 20                | 5.7        | 20            |          |                        | ethylbenzene     |                | 98            | 20               | 4.9                 | 20         |       |
| 1,4-Dichlorobenzene         | ND              | 20                | 4.2        | 20            |          |                        | ethylbenzene     |                | 27            | 20               | 4.6                 | 20         |       |
| Dichlorodifluoromethane     | ND              | 20                | 9.8        | 20            |          | Vinyl Aceta            | ite              |                | ND            | 200              | 140                 | 20         |       |
| 1,1-Dichloroethane          | ND              | 20                | 7.5        | 20            |          | Vinyl Chlor            | ide              |                | ND            | 10               | 6.5                 | 20         |       |
| 1,2-Dichloroethane          | ND              | 10                | 6.3        | 20            |          | p/m-Xylene             | <b>;</b>         |                | 300           | 20               | 9.1                 | 20         |       |
| 1,1-Dichloroethene          | ND              | 20                | 8.0        | 20            |          | o-Xylene               |                  |                | 100           | 20               | 4.7                 | 20         |       |
| c-1,2-Dichloroethene        | ND              | 20                | 9.7        | 20            |          | •                      | utyl Ether (M7   | BE)            | 210           | 20               | 6.1                 | 20         |       |
| t-1,2-Dichloroethene        | ND              | 20                | 8.1        | 20            |          | ,                      | Ether (DIPE      | ,              | 26            | 40               | 6.2                 | 20         | J     |
| 1,2-Dichloropropane         | ND              | 20                | 7.6        | 20            |          |                        | /I Ether (ETB    | ,              | ND            | 40               | 5.3                 | 20         |       |
| 1,3-Dichloropropane         | ND              | 20                | 7.6        | 20            |          |                        | Methyl Ether     | ,              | ND            | 40               | 5.7                 | 20         |       |
| 2,2-Dichloropropane         | ND              | 20                | 9.2        | 20            |          | Ethanol                | ·                | ,              | ND            | 2000             | 1000                | 20         |       |
| Surrogates:                 | REC (%)         | Control<br>Limits | Qu         | <u>ıal</u>    |          | Surrogates             | <u>.</u>         |                | REC (%)       | Contro<br>Limits | <u>ı</u> Q          | <u>ual</u> |       |
| Dibromofluoromethane        | 111             | 80-132            |            |               |          | 1.2-Dichlor            | oethane-d4       |                | 116           | 80-141           |                     |            |       |
| Toluene-d8                  | 100             | 80-120            |            |               |          | •                      | luorobenzene     | ,              | 95            | 76-120           |                     |            |       |
| i oluene-do                 | 100             | 00-120            |            |               |          | 1,4-Bromo              | iuoropenzene     | <del>.</del>   | 90            | 10-120           | ,                   |            |       |



, DF - Dilution Factor , Qual - Qualifiers





 AMEC Geomatrix, Inc.
 Date Received:
 05/14/10

 510 Superior Avenue
 Work Order No:
 10-05-1198

 Suite 200
 Preparation:
 EPA 5030B

 Newport Beach, CA 92663-3627
 Method:
 EPA 8260B

 Units:
 ug/L

Project: SFPP - Norwalk Site Page 2 of 2

| Client Sample Number        |                 |                   | Lab Sa<br>Numl |          |          | Date/Time<br>Collected | Matrix           | Instrument     | Date<br>Prepar |                   | e/Time<br>alyzed | QC Bat     | ch ID |
|-----------------------------|-----------------|-------------------|----------------|----------|----------|------------------------|------------------|----------------|----------------|-------------------|------------------|------------|-------|
| Method Blank                |                 |                   | 099-14         | -001-8   | 353      | N/A                    | Aqueous          | GC/MS LL       | 05/20/         |                   | 20/10<br>1:03    | 100520     | L01   |
| Comment(s): -Results were e | evaluated to th | ne MDL, co        | oncentratio    | ns >=    | to the N | IDL but < RL           | ., if found, are | e qualified wi | th a "J" flag  | ].                |                  |            |       |
| <u>Parameter</u>            | <u>Result</u>   | <u>RL</u>         | <u>MDL</u>     | DF       | Qual     | <u>Parameter</u>       |                  |                | Result         | <u>RL</u>         | <u>MDL</u>       | <u>DF</u>  | Qual  |
| Acetone                     | ND              | 50                | 20             | 1        |          | 1,1-Dichlor            | opropene         |                | ND             | 1.0               | 0.26             | 1          |       |
| Benzene                     | ND              | 0.50              | 0.28           | 1        |          | c-1,3-Dichle           | oropropene       |                | ND             | 0.50              | 0.28             | 1          |       |
| Bromobenzene                | ND              | 1.0               | 0.33           | 1        |          | t-1,3-Dichlo           | propropene       |                | ND             | 0.50              | 0.36             | 1          |       |
| Bromochloromethane          | ND              | 1.0               | 0.69           | 1        |          | Ethylbenze             | ne               |                | ND             | 1.0               | 0.22             | 1          |       |
| Bromodichloromethane        | ND              | 1.0               | 0.33           | 1        |          | 2-Hexanone             | е                |                | ND             | 10                | 6.9              | 1          |       |
| Bromoform                   | ND              | 1.0               | 0.55           | 1        |          | Isopropylbe            | enzene           |                | ND             | 1.0               | 0.23             | 1          |       |
| Bromomethane                | ND              | 10                | 4.3            | 1        |          | p-Isopropyl            | toluene          |                | ND             | 1.0               | 0.26             | 1          |       |
| 2-Butanone                  | ND              | 10                | 6.9            | 1        |          | Methylene (            |                  |                | ND             | 10                | 2.6              | 1          |       |
| n-Butylbenzene              | ND              | 1.0               | 0.28           | 1        |          | 4-Methyl-2-            | Pentanone        |                | ND             | 10                | 4.4              | 1          |       |
| sec-Butylbenzene            | ND              | 1.0               | 0.20           | 1        |          | Naphthalen             |                  |                | ND             | 10                | 2.5              | 1          |       |
| tert-Butylbenzene           | ND              | 1.0               | 0.28           | 1        |          | n-Propylbei            |                  |                | ND             | 1.0               | 0.79             | 1          |       |
| Carbon Disulfide            | ND              | 10                | 1.9            | 1        |          | Styrene                |                  |                | ND             | 1.0               | 0.30             | 1          |       |
| Carbon Tetrachloride        | ND              | 0.50              | 0.43           | 1        |          | •                      | rachloroethar    | ne             | ND             | 1.0               | 0.35             | 1          |       |
| Chlorobenzene               | ND              | 1.0               | 0.22           | 1        |          |                        | rachloroethar    |                | ND             | 1.0               | 0.44             | 1          |       |
| Chloroethane                | ND              | 5.0               | 1.3            | 1        |          | Tetrachloro            | ethene           |                | ND             | 1.0               | 0.51             | 1          |       |
| Chloroform                  | ND              | 1.0               | 0.33           | 1        |          | Toluene                |                  |                | ND             | 1.0               | 0.33             | 1          |       |
| Chloromethane               | ND              | 10                | 0.49           | 1        |          | 1.2.3-Trich            | lorobenzene      |                | ND             | 1.0               | 0.31             | 1          |       |
| 2-Chlorotoluene             | ND              | 1.0               | 0.55           | 1        |          |                        | lorobenzene      |                | ND             | 1.0               | 0.49             | 1          |       |
| 4-Chlorotoluene             | ND              | 1.0               | 0.21           | 1        |          | 1,1,1-Trich            |                  |                | ND             | 1.0               | 0.45             | 1          |       |
| Dibromochloromethane        | ND              | 1.0               | 0.48           | 1        |          |                        | loro-1,2,2-Tri   | fluoroethane   | ND             | 10                | 0.64             | 1          |       |
| 1,2-Dibromo-3-Chloropropane | ND              | 5.0               | 3.1            | 1        |          | 1,1,2-Trich            |                  |                | ND             | 1.0               | 0.54             | 1          |       |
| 1,2-Dibromoethane           | ND              | 1.0               | 0.47           | 1        |          | Trichloroeth           |                  |                | ND             | 1.0               | 0.30             | 1          |       |
| Dibromomethane              | ND              | 1.0               | 0.59           | 1        |          |                        | oromethane       |                | ND             | 10                | 0.31             | 1          |       |
| 1,2-Dichlorobenzene         | ND              | 1.0               | 0.27           | 1        |          |                        | loropropane      |                | ND             | 5.0               | 1.3              | 1          |       |
| 1,3-Dichlorobenzene         | ND              | 1.0               | 0.28           | 1        |          |                        | ethylbenzene     |                | ND             | 1.0               | 0.24             | 1          |       |
| 1,4-Dichlorobenzene         | ND              | 1.0               | 0.21           | 1        |          |                        | ethylbenzene     |                | ND             | 1.0               | 0.23             | 1          |       |
| Dichlorodifluoromethane     | ND              | 1.0               | 0.49           | 1        |          | Vinyl Aceta            | ,                |                | ND             | 10                | 7.1              | 1          |       |
| 1,1-Dichloroethane          | ND              | 1.0               | 0.37           | 1        |          | Vinyl Chlori           |                  |                | ND             | 0.50              | 0.33             | 1          |       |
| 1,2-Dichloroethane          | ND              | 0.50              | 0.31           | 1        |          | p/m-Xylene             |                  |                | ND             | 1.0               | 0.45             | 1          |       |
| 1,1-Dichloroethene          | ND              | 1.0               | 0.40           | 1        |          | o-Xylene               |                  |                | ND             | 1.0               | 0.24             | 1          |       |
| c-1,2-Dichloroethene        | ND              | 1.0               | 0.49           | 1        |          | ,                      | ıtyl Ether (MT   | BE)            | ND             | 1.0               | 0.30             | 1          |       |
| t-1,2-Dichloroethene        | ND              | 1.0               | 0.40           | 1        |          | •                      | Ether (DIPE)     | ,              | ND             | 2.0               | 0.31             | 1          |       |
| 1,2-Dichloropropane         | ND              | 1.0               | 0.38           | 1        |          |                        | /I Ether (ETB    |                | ND             | 2.0               | 0.27             | 1          |       |
| 1,3-Dichloropropane         | ND              | 1.0               | 0.38           | 1        |          | , ,                    | Methyl Ether     | ,              | ND             | 2.0               | 0.28             | 1          |       |
| 2,2-Dichloropropane         | ND              | 1.0               | 0.46           | 1        |          | Ethanol                | ,                | ,              | ND             | 100               | 50               | 1          |       |
| Surrogates:                 | REC (%)         | Control<br>Limits | Qua            | <u>l</u> |          | <u>Surrogates</u> :    | <u>:</u>         |                | REC (%)        | Control<br>Limits | Q                | <u>ual</u> |       |
| Dibromofluoromethane        | 106             | 80-132            |                |          |          | 1,2-Dichlor            | oethane-d4       |                | 107            | 80-141            |                  |            |       |
| Toluene-d8                  | 99              | 80-120            |                |          |          | 1,4-Bromof             | luorobenzene     | e              | 93             | 76-120            |                  |            |       |

RL - Reporting Limit ,

DF - Dilution Factor , Qual - Qualifiers



# **Quality Control - Spike/Spike Duplicate**



AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200

Newport Beach, CA 92663-3627

Date Received: Work Order No: Preparation: Method: 05/14/10 10-05-1198 EPA 5030B EPA 8015B (M)

Project SFPP - Norwalk Site

| Quality Control Sample ID | Matrix  | Instrument | Date<br>Prepared |            | Date<br>Analyzed | MS/MSD Batch<br>Number |
|---------------------------|---------|------------|------------------|------------|------------------|------------------------|
| 10-05-1138-3              | Aqueous | GC 1       | 05/15/10         |            | 05/16/10         | 100515S02              |
| <u>Parameter</u>          | MS %REC | MSD %REC   | %REC CL          | <u>RPD</u> | RPD CL           | Qualifiers             |
| TPH as Gasoline           | 92      | 91         | 68-122           | 1          | 0-18             |                        |

MM.\_\_\_\_



# **Quality Control - Spike/Spike Duplicate**



AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200

Newport Beach, CA 92663-3627

Date Received: Work Order No: Preparation: Method: 05/14/10 10-05-1198 EPA 5030B EPA 8260B

Project SFPP - Norwalk Site

| Quality Control Sample ID     | Matrix  | Instrument | Date<br>Prepared | A          | Date<br>nalyzed | MS/MSD Batch<br>Number |
|-------------------------------|---------|------------|------------------|------------|-----------------|------------------------|
| 10-05-1381-1                  | Aqueous | GC/MS LL   | 05/20/10         | 05/21/10   |                 | 100520S01              |
|                               |         |            |                  |            |                 |                        |
| <u>Parameter</u>              | MS %REC | MSD %REC   | %REC CL          | <u>RPD</u> | RPD CL          | Qualifiers             |
| P                             | 07      | 00         | 70.400           |            | 0.00            |                        |
| Benzene                       | 97      | 93         | 72-120           | 4          | 0-20            |                        |
| Carbon Tetrachloride          | 106     | 103        | 63-135           | 3          | 0-20            |                        |
| Chlorobenzene                 | 96      | 94         | 80-120           | 2          | 0-20            |                        |
| 1,2-Dibromoethane             | 95      | 94         | 80-120           | 1          | 0-20            |                        |
| 1,2-Dichlorobenzene           | 93      | 94         | 80-120           | 1          | 0-20            |                        |
| 1,2-Dichloroethane            | 105     | 101        | 80-120           | 3          | 0-20            |                        |
| 1,1-Dichloroethene            | 93      | 91         | 60-132           | 2          | 0-24            |                        |
| Ethylbenzene                  | 101     | 100        | 78-120           | 1          | 0-20            |                        |
| Toluene                       | 98      | 95         | 74-122           | 3          | 0-20            |                        |
| Trichloroethene               | 99      | 95         | 69-120           | 3          | 0-20            |                        |
| Vinyl Chloride                | 110     | 120        | 58-130           | 9          | 0-20            |                        |
| Methyl-t-Butyl Ether (MTBE)   | 99      | 95         | 72-126           | 4          | 0-21            |                        |
| Tert-Butyl Alcohol (TBA)      | 99      | 105        | 72-126           | 6          | 0-20            |                        |
| Diisopropyl Ether (DIPE)      | 99      | 96         | 71-137           | 4          | 0-23            |                        |
| Ethyl-t-Butyl Ether (ETBE)    | 98      | 96         | 74-128           | 2          | 0-20            |                        |
| Tert-Amyl-Methyl Ether (TAME) | 99      | 94         | 76-124           | 5          | 0-20            |                        |
| Ethanol                       | 102     | 112        | 35-167           | 10         | 0-48            |                        |

MMM\_





AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Newport Beach, CA 92663-3627 Date Received: Work Order No: Preparation: Method:

10-05-1198 EPA 3510C EPA 8015B (M)

N/A

Project: SFPP - Norwalk Site

| Quality Control Sample ID | Matrix  | Instrument | Date<br>Prepar      |          | ate<br>yzed | LCS/LCSD Bate<br>Number | h          |
|---------------------------|---------|------------|---------------------|----------|-------------|-------------------------|------------|
| 099-12-384-26             | Aqueous | GC 48      | 05/18/ <sup>-</sup> | 10 05/19 | 9/10        | 100518B06               |            |
|                           |         |            |                     |          |             |                         |            |
| <u>Parameter</u>          | LCS %   | 6REC LCSD  | %REC                | %REC CL  | <u>RPD</u>  | RPD CL                  | Qualifiers |
| TPH as Fuel Product       | 93      | 94         |                     | 75-117   | 1           | 0-13                    |            |

Mullim.





AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Newport Beach, CA 92663-3627 Date Received: Work Order No: Preparation: Method:

10-05-1198 EPA 5030B EPA 8015B (M)

N/A

Project: SFPP - Norwalk Site

| Quality Control Sample ID | Matrix  | Instrument | Date<br>Prepared | Date<br>Analyzed | LCS/LCSD Bat<br>Number | ch         |
|---------------------------|---------|------------|------------------|------------------|------------------------|------------|
| 099-12-247-4,205          | Aqueous | GC 1       | 05/15/10         | 05/16/10         | 100515B02              |            |
|                           |         |            |                  |                  |                        |            |
| <u>Parameter</u>          | LCS %   | 6REC LCSD  | %REC %F          | REC CL RF        | PD RPD CL              | Qualifiers |
| TPH as Gasoline           | 105     | 104        | 7                | 78-120 1         | 0-10                   |            |

MMM\_





AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Newport Beach, CA 92663-3627 Date Received: Work Order No: Preparation: Method:

10-05-1198 EPA 5030B EPA 8260B

N/A

Project: SFPP - Norwalk Site

| Quality Control Sample ID     | Matrix   | Instrument | Date<br>Prepared | Da<br>Anal | ate<br>yzed | LCS/LCSD<br>Numbe |            |
|-------------------------------|----------|------------|------------------|------------|-------------|-------------------|------------|
| 099-14-001-853                | Aqueous  | GC/MS LL   | 05/20/10         | 05/20/10   |             | 100520L           | 01         |
| <u>Parameter</u>              | LCS %REC | LCSD %REC  | %REC CL          | ME CL      | RPD         | RPD CL            | Qualifiers |
| Benzene                       | 93       | 95         | 80-122           | 73-129     | 2           | 0-20              |            |
| Carbon Tetrachloride          | 97       | 99         | 68-140           | 56-152     | 3           | 0-20              |            |
| Chlorobenzene                 | 95       | 97         | 80-120           | 73-127     | 3           | 0-20              |            |
| 1,2-Dibromoethane             | 91       | 95         | 80-121           | 73-128     | 4           | 0-20              |            |
| 1,2-Dichlorobenzene           | 94       | 98         | 80-120           | 73-127     | 4           | 0-20              |            |
| 1,1-Dichloroethene            | 90       | 95         | 72-132           | 62-142     | 5           | 0-25              |            |
| Ethylbenzene                  | 97       | 101        | 80-126           | 72-134     | 3           | 0-20              |            |
| Toluene                       | 94       | 96         | 80-121           | 73-128     | 3           | 0-20              |            |
| Trichloroethene               | 93       | 97         | 80-123           | 73-130     | 4           | 0-20              |            |
| Vinyl Chloride                | 91       | 95         | 67-133           | 56-144     | 4           | 0-20              |            |
| Methyl-t-Butyl Ether (MTBE)   | 97       | 101        | 75-123           | 67-131     | 4           | 0-20              |            |
| Tert-Butyl Alcohol (TBA)      | 102      | 105        | 75-123           | 67-131     | 4           | 0-20              |            |
| Diisopropyl Ether (DIPE)      | 97       | 100        | 71-131           | 61-141     | 4           | 0-20              |            |
| Ethyl-t-Butyl Ether (ETBE)    | 96       | 100        | 76-124           | 68-132     | 5           | 0-20              |            |
| Tert-Amyl-Methyl Ether (TAME) | 96       | 98         | 80-123           | 73-130     | 2           | 0-20              |            |
| Ethanol                       | 74       | 83         | 61-139           | 48-152     | 11          | 0-27              |            |

Total number of LCS compounds: 16

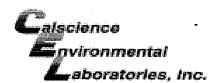
Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result : Pass






## **Glossary of Terms and Qualifiers**



Work Order Number: 10-05-1198

| Qualifier<br>* | Definition See applicable analysis comment.                                                                                                                                                                                                            |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <              | Less than the indicated value.                                                                                                                                                                                                                         |
|                | Greater than the indicated value.                                                                                                                                                                                                                      |
| >              |                                                                                                                                                                                                                                                        |
| 1              | Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.                                                                                               |
| 2              | Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.                             |
| 3              | Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.    |
| 4              | The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.                                                                              |
| 5              | The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification. |
| В              | Analyte was present in the associated method blank.                                                                                                                                                                                                    |
| E              | Concentration exceeds the calibration range.                                                                                                                                                                                                           |
| J              | Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.                                                                                                        |
| ME             | LCS Recovery Percentage is within LCS ME Control Limit range.                                                                                                                                                                                          |
| ND             | Parameter not detected at the indicated reporting limit.                                                                                                                                                                                               |
| Q              | Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.                                                                          |
| X              | % Recovery and/or RPD out-of-range.                                                                                                                                                                                                                    |
| Z              | Analyte presence was not confirmed by second column or GC/MS analysis.                                                                                                                                                                                 |
|                | Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.                                                                                                                                 |

**CHAIN OF CUSTODY RECORD** (Temp. as sampled\*) Comments Temperature\* = Р QUOTE NO.: 0 P.O. NO. Monthly REQUESTED ANALYSIS Date DATE: PAGE: TAT AH AS no muinaleS Hg,Cr(VI),Cu(1669,7199,6020) 5 Total Suspended Solids (160.2) (c.001) sbiloc sideableS MtBE;BTEX;1,1-DCA;1,2-DCA;MEK(8260B) SFPP - Norwalk Site TPH-9 (C5-C14 Only) (8015M) James Dye SAMPLER(S): (SIGNA) PROJECT CONTACT: VOCs, Full List (8260B) (M2108) q1-H9T Received by: (Signature) Received by: (Signature) Received by: (Signature) (M2108) g - H9T NO. OF CONT. ☐ 10 DAYS "J" flags required/Use lowest possible detection limit - all methods. <u></u> MAT. Stell Ę Direct Bill KMEP/SFPP - Steve Defibaugh-ref. AFE# 81195 5 DAYS SAMPLING TEL: (714) 895-5494 . FAX: (714) 894-7501 5.14.10 Kinder Morgan Energy Partners, Attn: Steve Defibaugh DATE **GARDEN GROVE, CA 92841-1432** TRWQCB REPORTING ARCHIVE SAMPLES UNTIL 72 HR 714-560-4601 Report to A. Padilla at Geomatrix, cc: KMEP 7440 LINCOLN WAY LOCATION/ DESCRIPTION SAME DAY 24 HR 48HR Influent FAX: 100 Town & Country Road ■aboratories, Inc. 714-560-4802 SAMPLE ID Hed by: (Signature) **Drange, CA 92868** Revised: 07/23/09 nvironmental Ľ. LAB USE



WORK ORDER #: 10-05- [/] [7] [8]

# SAMPLE RECEIPT FORM

Box \_\_/ of \_\_/

| CLIENT: KMEP                                                                                                                                                                          | DATE:                 | 05/14/10                                 |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------|--|--|--|--|--|--|--|--|
| TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C - 6.0 °C, not frozen)  Temperature °C + 0.5 °C (CF) = 6 °C                                                                         |                       |                                          |  |  |  |  |  |  |  |  |
| CUSTODY SEALS INTACT:  □ Cooler □ □ □ No (Not Intact) ☑ Not Present □ Sample □ □ No (Not Intact) ☑ Not Present                                                                        | □ N/A                 | Initial: <u>BC</u><br>Initial: <u>PS</u> |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                       | Yes                   | No N/A                                   |  |  |  |  |  |  |  |  |
| Chain-Of-Custody (COC) document(s) received with samples                                                                                                                              | Z                     |                                          |  |  |  |  |  |  |  |  |
| COC document(s) received complete                                                                                                                                                     |                       |                                          |  |  |  |  |  |  |  |  |
| $\square$ Collection date/time, matrix, and/or # of containers logged in based on sample labels.                                                                                      |                       |                                          |  |  |  |  |  |  |  |  |
| $\square$ No analysis requested. $\ \square$ Not relinquished. $\ \square$ No date/time relinquished.                                                                                 |                       | •                                        |  |  |  |  |  |  |  |  |
| Sampler's name indicated on COC                                                                                                                                                       | Ø                     |                                          |  |  |  |  |  |  |  |  |
| Sample container label(s) consistent with COC                                                                                                                                         |                       |                                          |  |  |  |  |  |  |  |  |
| Sample container(s) intact and good condition                                                                                                                                         | $\square$             |                                          |  |  |  |  |  |  |  |  |
| Proper containers and sufficient volume for analyses requested                                                                                                                        | Ø                     |                                          |  |  |  |  |  |  |  |  |
| Analyses received within holding time                                                                                                                                                 |                       |                                          |  |  |  |  |  |  |  |  |
| pH / Residual Chlorine / Dissolved Sulfide received within 24 hours                                                                                                                   |                       |                                          |  |  |  |  |  |  |  |  |
| Proper preservation noted on COC or sample container                                                                                                                                  | Ø                     |                                          |  |  |  |  |  |  |  |  |
| ☐ Unpreserved vials received for Volatiles analysis                                                                                                                                   |                       |                                          |  |  |  |  |  |  |  |  |
| Volatile analysis container(s) free of headspace                                                                                                                                      | <b>Z</b>              |                                          |  |  |  |  |  |  |  |  |
| Tedlar bag(s) free of condensation  CONTAINER TYPE:                                                                                                                                   |                       |                                          |  |  |  |  |  |  |  |  |
| Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores                                                                                                                                   | s <sup>®</sup> □Terra | Cores® □                                 |  |  |  |  |  |  |  |  |
| Water: □VOA ☑VOAh □VOAna₂ □125AGB □125AGBh □125AGBp                                                                                                                                   |                       |                                          |  |  |  |  |  |  |  |  |
| □500AGB ☑500AGJ □500AGJs □250AGB □250CGB □250CGBs                                                                                                                                     |                       |                                          |  |  |  |  |  |  |  |  |
| □250PB □250PB <b>n</b> □125PB □125PB <b>znna</b> □100PJ □100PJ <b>na</b> ₂ □                                                                                                          | □                     |                                          |  |  |  |  |  |  |  |  |
| Air: □Tedlar <sup>®</sup> □Summa <sup>®</sup> Other: □ Trip Blank Lot#:                                                                                                               | _ Labeled/            | Checked by:                              |  |  |  |  |  |  |  |  |
| Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Preservative: h: HCL n: HNO3 na2:Na2S2O3 na: NaOH p: H3PO4 s: H2SO4 znna: ZnAc2+NaOH f: |                       | Reviewed by:                             |  |  |  |  |  |  |  |  |





July 02, 2010

Alex Padilla AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Newport Beach, CA 92663-3627

Subject: Calscience Work Order No.: 10-06-2057

Client Reference: SFPP - Norwalk Site

#### Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 6/25/2010 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Stephen Nowak Project Manager

CA-ELAP ID: 1230 • NELAP ID: 03220CA • CSDLAC ID: 10109 • SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

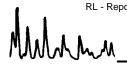




AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200

Newport Beach, CA 92663-3627

Date Received: Work Order No: Preparation: Method: 06/25/10 10-06-2057 EPA 3510C EPA 8015B (M)


Project: SFPP - Norwalk Site

Page 1 of 1

| Client Sample Number              |                        | Lab Sampl<br>Number   | e                 | Date/Time<br>Collected | Matrix          | Instrument       | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|-----------------------------------|------------------------|-----------------------|-------------------|------------------------|-----------------|------------------|------------------|-----------------------|-------------|
| INF-06-25                         |                        | 10-06-20              | 57-1-G            | 06/25/10<br>11:40      | Aqueous         | GC 27            | 06/28/10         | 06/29/10<br>13:25     | 100628B06   |
| Comment(s): -Results were evalua- | ated to the MDL,       | concentrations >      | = to the I        | MDL but < R            | L, if found, ar | e qualified with | n a "J" flag.    |                       | _           |
| <u>Parameter</u>                  | Result                 | <u>RL</u>             | <u>MDL</u>        |                        | <u>DF</u>       | <u>Qual</u>      | <u>Units</u>     |                       |             |
| TPH as Fuel Product Surrogates:   | 2600<br><u>REC (%)</u> | 500<br>Control Limits | 430<br><u>MDL</u> | 1                      |                 | <u>Qual</u>      | ug/L             |                       |             |
| Decachlorobiphenyl                | 111                    | 68-140                |                   |                        |                 |                  |                  |                       |             |
| Method Blank                      |                        | 099-12-3              | 84-27             | N/A                    | Aqueous         | GC 27            | 06/28/10         | 06/29/10<br>12:31     | 100628B06   |

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag. <u>Parameter</u> Result RL <u>MDL</u> <u>DF</u> Qual TPH as Fuel Product ND 500 430 ug/L Surrogates: **Control Limits** MDL Qual Decachlorobiphenyl 116 68-140

Decachiolophenyi 110 o







AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200

Newport Beach, CA 92663-3627

Date Received: Work Order No: Preparation: Method:

06/25/10 10-06-2057 **EPA 5030B** EPA 8015B (M)

Project: SFPP - Norwalk Site

Page 1 of 1

| Client Sample Number              |                        | Lab Sampl<br>Number   | e                 | Date/Time<br>Collected | Matrix          | Instrument       | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|-----------------------------------|------------------------|-----------------------|-------------------|------------------------|-----------------|------------------|------------------|-----------------------|-------------|
| INF-06-25                         |                        | 10-06-20              | 57-1-E            | 06/25/10<br>11:40      | Aqueous         | GC 18            | 07/01/10         | 07/01/10<br>12:38     | 100701B01   |
| Comment(s): -Results were evalua- | ated to the MDL,       | concentrations >      | = to the N        | IDL but < RI           | _, if found, ar | e qualified with | n a "J" flag.    |                       |             |
| <u>Parameter</u>                  | <u>Result</u>          | <u>RL</u>             | MDL               | ļ                      | <u>DF</u>       | <u>Qual</u>      | <u>Units</u>     |                       |             |
| TPH as Gasoline Surrogates:       | 4600<br><u>REC (%)</u> | 500<br>Control Limits | 240<br><u>MDL</u> | 5                      |                 | <u>Qual</u>      | ug/L             |                       |             |
| 1,4-Bromofluorobenzene            | 92                     | 38-134                |                   |                        |                 |                  |                  |                       |             |
| Method Blank                      |                        | 099-12-2              | 47-4,318          | N/A                    | Aqueous         | GC 18            | 07/01/10         | 07/01/10<br>10:45     | 100701B01   |

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag. <u>Parameter</u> Result RL <u>MDL</u> <u>DF</u> TPH as Gasoline ND 100 48 ug/L Surrogates: **Control Limits** MDL Qual 38-134

84 1,4-Bromofluorobenzene

DF - Dilution Factor Qual - Qualifiers





AMEC Geomatrix, Inc. 510 Superior Avenue

Suite 200

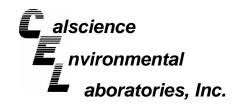
Newport Beach, CA 92663-3627

Date Received: Work Order No: Preparation:

10-06-2057 **EPA 5030B** 

06/25/10

Method: **EPA 8260B** Units:


ug/L

Project: SFPP - Norwalk Site

Page 1 of 2

| Client Sample Number        |                 |                   | Lab Sa<br>Numb | •         |       | Date/Time<br>Collected | Matrix          | Instrument   | Date<br>Prepar |                   | te/Time<br>alyzed | QC Bat     | ch ID |
|-----------------------------|-----------------|-------------------|----------------|-----------|-------|------------------------|-----------------|--------------|----------------|-------------------|-------------------|------------|-------|
| INF-06-25                   |                 |                   | 10-06-2        | :057-1-A  |       | 06/25/10<br>11:40      | Aqueous         | GC/MS S      | 06/25/1        |                   | /26/10<br>08:29   | 100625     | L03   |
| Comment(s): -Results were   | evaluated to th | e MDL, co         | oncentratio    | ons >= to | the M | DL but < RL            | , if found, are | qualified wi | th a "J" flag  | <b>J</b> .        |                   |            |       |
| <u>Parameter</u>            | <u>Result</u>   | <u>RL</u>         | <u>MDL</u>     | DF C      | Qual  | <u>Parameter</u>       |                 |              | Result         | <u>RL</u>         | <u>MDL</u>        | <u>DF</u>  | Qual  |
| Acetone                     | ND              | 1000              | 400            | 20        |       | 1,1-Dichloro           | opropene        |              | ND             | 20                | 5.1               | 20         |       |
| Benzene                     | 2200            | 10                | 5.7            | 20        |       | c-1,3-Dichlo           | oropropene      |              | ND             | 10                | 5.7               | 20         |       |
| Bromobenzene                | ND              | 20                | 6.7            | 20        |       | t-1,3-Dichlo           | ropropene       |              | ND             | 10                | 7.2               | 20         |       |
| Bromochloromethane          | ND              | 20                | 14             | 20        |       | Ethylbenzer            | ne              |              | 61             | 20                | 4.4               | 20         |       |
| Bromodichloromethane        | ND              | 20                | 6.6            | 20        |       | 2-Hexanone             | )               |              | ND             | 200               | 140               | 20         |       |
| Bromoform                   | ND              | 20                | 11             | 20        |       | Isopropylbe            | nzene           |              | 5.5            | 20                | 4.5               | 20         | J     |
| Bromomethane                | ND              | 200               | 86             | 20        |       | p-Isopropylt           | oluene          |              | ND             | 20                | 5.2               | 20         |       |
| 2-Butanone                  | ND              | 200               | 140            | 20        |       | Methylene (            | Chloride        |              | ND             | 200               | 52                | 20         |       |
| n-Butylbenzene              | ND              | 20                | 5.5            | 20        |       | 4-Methyl-2-            | Pentanone       |              | ND             | 200               | 88                | 20         |       |
| sec-Butylbenzene            | ND              | 20                | 4.1            | 20        |       | Naphthalen             | е               |              | ND             | 200               | 51                | 20         |       |
| tert-Butylbenzene           | ND              | 20                | 5.5            | 20        |       | n-Propylber            | nzene           |              | ND             | 20                | 16                | 20         |       |
| Carbon Disulfide            | ND              | 200               | 38             | 20        |       | Styrene                |                 |              | ND             | 20                | 6.0               | 20         |       |
| Carbon Tetrachloride        | ND              | 10                | 8.5            | 20        |       | 1,1,1,2-Tetr           | achloroethan    | ie           | ND             | 20                | 7.0               | 20         |       |
| Chlorobenzene               | ND              | 20                | 4.4            | 20        |       | 1,1,2,2-Tetr           | achloroethan    | ie           | ND             | 20                | 8.8               | 20         |       |
| Chloroethane                | ND              | 100               | 26             | 20        |       | Tetrachloro            | ethene          |              | ND             | 20                | 10                | 20         |       |
| Chloroform                  | ND              | 20                | 6.6            | 20        |       | Toluene                |                 |              | 540            | 20                | 6.5               | 20         |       |
| Chloromethane               | ND              | 200               | 9.7            | 20        |       | 1,2,3-Trichl           | orobenzene      |              | ND             | 20                | 6.1               | 20         |       |
| 2-Chlorotoluene             | ND              | 20                | 11             | 20        |       | 1,2,4-Trichl           | orobenzene      |              | ND             | 20                | 9.7               | 20         |       |
| 4-Chlorotoluene             | ND              | 20                | 4.2            | 20        |       | 1,1,1-Trichl           | oroethane       |              | ND             | 20                | 9.0               | 20         |       |
| Dibromochloromethane        | ND              | 20                | 9.7            | 20        |       | 1,1,2-Trichl           | oro-1,2,2-Trif  | fluoroethane | ND             | 200               | 13                | 20         |       |
| 1,2-Dibromo-3-Chloropropane | ND              | 100               | 62             | 20        |       | 1,1,2-Trichl           | oroethane       |              | ND             | 20                | 11                | 20         |       |
| 1,2-Dibromoethane           | ND              | 20                | 9.3            | 20        |       | Trichloroeth           | ene             |              | ND             | 20                | 6.1               | 20         |       |
| Dibromomethane              | ND              | 20                | 12             | 20        |       | Trichloroflu           | oromethane      |              | ND             | 200               | 6.2               | 20         |       |
| 1,2-Dichlorobenzene         | ND              | 20                | 5.4            | 20        |       | 1,2,3-Trichl           | oropropane      |              | ND             | 100               | 27                | 20         |       |
| 1,3-Dichlorobenzene         | ND              | 20                | 5.7            | 20        |       | 1,2,4-Trime            | thylbenzene     |              | 62             | 20                | 4.9               | 20         |       |
| 1,4-Dichlorobenzene         | ND              | 20                | 4.2            | 20        |       | 1,3,5-Trime            | thylbenzene     |              | 22             | 20                | 4.6               | 20         |       |
| Dichlorodifluoromethane     | ND              | 20                | 9.8            | 20        |       | Vinyl Acetat           | te              |              | ND             | 200               | 140               | 20         |       |
| 1,1-Dichloroethane          | ND              | 20                | 7.5            | 20        |       | Vinyl Chlori           | de              |              | ND             | 10                | 6.5               | 20         |       |
| 1,2-Dichloroethane          | ND              | 10                | 6.3            | 20        |       | p/m-Xylene             |                 |              | 270            | 20                | 9.1               | 20         |       |
| 1,1-Dichloroethene          | ND              | 20                | 8.0            | 20        |       | o-Xylene               |                 |              | 110            | 20                | 4.7               | 20         |       |
| c-1,2-Dichloroethene        | ND              | 20                | 9.7            | 20        |       | Methyl-t-Bu            | tyl Ether (MT   | BE)          | 170            | 20                | 6.1               | 20         |       |
| t-1,2-Dichloroethene        | ND              | 20                | 8.1            | 20        |       | •                      | Éther (DIPE)    | ,            | 17             | 40                | 6.2               | 20         | J     |
| 1,2-Dichloropropane         | ND              | 20                | 7.6            | 20        |       |                        | l Ether (ETB    |              | ND             | 40                | 5.3               | 20         |       |
| 1,3-Dichloropropane         | ND              | 20                | 7.6            | 20        |       |                        | /lethyl Ether ( | •            | ND             | 40                | 5.7               | 20         |       |
| 2,2-Dichloropropane         | ND              | 20                | 9.2            | 20        |       | Ethanol                |                 | . ,          | ND             | 2000              | 1000              | 20         |       |
| Surrogates:                 | REC (%)         | Control<br>Limits | <u>Qua</u>     | Į.        |       | Surrogates:            |                 |              | REC (%)        | Control<br>Limits | <u>Q</u>          | <u>ual</u> |       |
| Dibromofluoromethane        | 125             | 80-126            |                |           |       | 1,2-Dichloro           | oethane-d4      |              | 122            | 80-131            |                   |            |       |
| Toluene-d8                  | 95              | 80-120            |                |           |       | •                      | uorobenzene     | )            | 93             | 80-120            |                   |            |       |
| i diadrio do                | 50              | 20 120            |                |           |       | .,- 510111011          | 401000112011C   | •            | 50             | 55 .20            |                   |            |       |







AMEC Geomatrix, Inc. 510 Superior Avenue

Suite 200 Newport Beach, CA 92663-3627 Date Received:
Work Order No:
Preparation:
Method:

10-06-2057 EPA 5030B

06/25/10

od: EPA 8260B ug/L

Project: SFPP - Norwalk Site Page 2 of 2

Units:

| Client Sample Number        |                 |                   | Lab Sa<br>Numb | •      |          | Date/Time<br>Collected | Matrix           | Instrument   | Date<br>Prepar |                 | ate/Time<br>Analyzed | QC Bat     | ch ID |
|-----------------------------|-----------------|-------------------|----------------|--------|----------|------------------------|------------------|--------------|----------------|-----------------|----------------------|------------|-------|
| Method Blank                |                 |                   | 099-14         | -001-1 | ,256     | N/A                    | Aqueous          | GC/MS S      | 06/25/1        | 10 (            | 06/26/10<br>01:51    | 100625     | L03   |
| Comment(s): -Results were   | evaluated to tl | ne MDL, c         | oncentratio    | ns >=  | to the N | /IDL but < RL          | ., if found, are | qualified wi | th a "J" flag  | j.              |                      |            |       |
| <u>Parameter</u>            | Result          | <u>RL</u>         | <u>MDL</u>     | DF     | Qual     | <u>Parameter</u>       |                  |              | Result         | <u>RL</u>       | <u>MDL</u>           | <u>DF</u>  | Qual  |
| Acetone                     | ND              | 50                | 20             | 1      |          | 1,1-Dichlor            | opropene         |              | ND             | 1.0             | 0.26                 | 1          |       |
| Benzene                     | ND              | 0.50              | 0.28           | 1      |          | c-1,3-Dichl            | oropropene       |              | ND             | 0.50            | 0.28                 | 1          |       |
| Bromobenzene                | ND              | 1.0               | 0.33           | 1      |          | t-1,3-Dichlo           | propropene       |              | ND             | 0.50            | 0.36                 | 1          |       |
| Bromochloromethane          | ND              | 1.0               | 0.69           | 1      |          | Ethylbenze             | ne               |              | ND             | 1.0             | 0.22                 | 1          |       |
| Bromodichloromethane        | ND              | 1.0               | 0.33           | 1      |          | 2-Hexanon              | е                |              | ND             | 10              | 6.9                  | 1          |       |
| Bromoform                   | ND              | 1.0               | 0.55           | 1      |          | Isopropylbe            | enzene           |              | ND             | 1.0             | 0.23                 | 1          |       |
| Bromomethane                | ND              | 10                | 4.3            | 1      |          | p-Isopropyl            | toluene          |              | ND             | 1.0             | 0.26                 | 1          |       |
| 2-Butanone                  | ND              | 10                | 6.9            | 1      |          | Methylene              | Chloride         |              | ND             | 10              | 2.6                  | 1          |       |
| n-Butylbenzene              | ND              | 1.0               | 0.28           | 1      |          | 4-Methyl-2-            | Pentanone        |              | ND             | 10              | 4.4                  | 1          |       |
| sec-Butylbenzene            | ND              | 1.0               | 0.20           | 1      |          | Naphthaler             | ie               |              | ND             | 10              | 2.5                  | 1          |       |
| tert-Butylbenzene           | ND              | 1.0               | 0.28           | 1      |          | n-Propylbe             | nzene            |              | ND             | 1.0             | 0.79                 | 1          |       |
| Carbon Disulfide            | ND              | 10                | 1.9            | 1      |          | Styrene                |                  |              | ND             | 1.0             | 0.30                 | 1          |       |
| Carbon Tetrachloride        | ND              | 0.50              | 0.43           | 1      |          | 1,1,1,2-Tet            | rachloroethar    | ne           | ND             | 1.0             | 0.35                 | 1          |       |
| Chlorobenzene               | ND              | 1.0               | 0.22           | 1      |          | 1,1,2,2-Tet            | rachloroethar    | ne           | ND             | 1.0             | 0.44                 | 1          |       |
| Chloroethane                | ND              | 5.0               | 1.3            | 1      |          | Tetrachloro            | ethene           |              | ND             | 1.0             | 0.51                 | 1          |       |
| Chloroform                  | ND              | 1.0               | 0.33           | 1      |          | Toluene                |                  |              | ND             | 1.0             | 0.33                 | 1          |       |
| Chloromethane               | ND              | 10                | 0.49           | 1      |          | 1,2,3-Trich            | lorobenzene      |              | ND             | 1.0             | 0.31                 | 1          |       |
| 2-Chlorotoluene             | ND              | 1.0               | 0.55           | 1      |          | 1,2,4-Trich            | lorobenzene      |              | ND             | 1.0             | 0.49                 | 1          |       |
| 4-Chlorotoluene             | ND              | 1.0               | 0.21           | 1      |          | 1,1,1-Trich            | loroethane       |              | ND             | 1.0             | 0.45                 | 1          |       |
| Dibromochloromethane        | ND              | 1.0               | 0.48           | 1      |          | 1,1,2-Trich            | loro-1,2,2-Trit  | fluoroethane | ND             | 10              | 0.64                 | 1          |       |
| 1,2-Dibromo-3-Chloropropane | ND              | 5.0               | 3.1            | 1      |          | 1,1,2-Trich            | loroethane       |              | ND             | 1.0             | 0.54                 | 1          |       |
| 1,2-Dibromoethane           | ND              | 1.0               | 0.47           | 1      |          | Trichloroetl           | nene             |              | ND             | 1.0             | 0.30                 | 1          |       |
| Dibromomethane              | ND              | 1.0               | 0.59           | 1      |          | Trichloroflu           | oromethane       |              | ND             | 10              | 0.31                 | 1          |       |
| 1,2-Dichlorobenzene         | ND              | 1.0               | 0.27           | 1      |          | 1,2,3-Trich            | loropropane      |              | ND             | 5.0             | 1.3                  | 1          |       |
| 1,3-Dichlorobenzene         | ND              | 1.0               | 0.28           | 1      |          | 1,2,4-Trime            | ethylbenzene     |              | ND             | 1.0             | 0.24                 | 1          |       |
| 1,4-Dichlorobenzene         | ND              | 1.0               | 0.21           | 1      |          | 1,3,5-Trime            | ethylbenzene     |              | ND             | 1.0             | 0.23                 | 1          |       |
| Dichlorodifluoromethane     | ND              | 1.0               | 0.49           | 1      |          | Vinyl Aceta            | te               |              | ND             | 10              | 7.1                  | 1          |       |
| 1,1-Dichloroethane          | ND              | 1.0               | 0.37           | 1      |          | Vinyl Chlor            | ide              |              | ND             | 0.50            | 0.33                 | 1          |       |
| 1,2-Dichloroethane          | ND              | 0.50              | 0.31           | 1      |          | p/m-Xylene             | :                |              | ND             | 1.0             | 0.45                 | 1          |       |
| 1,1-Dichloroethene          | ND              | 1.0               | 0.40           | 1      |          | o-Xylene               |                  |              | ND             | 1.0             | 0.24                 | 1          |       |
| c-1,2-Dichloroethene        | ND              | 1.0               | 0.49           | 1      |          | Methyl-t-Bu            | ityl Ether (MT   | BE)          | ND             | 1.0             | 0.30                 | 1          |       |
| t-1,2-Dichloroethene        | ND              | 1.0               | 0.40           | 1      |          | Diisopropyl            | Ether (DIPE)     | )            | ND             | 2.0             | 0.31                 | 1          |       |
| 1,2-Dichloropropane         | ND              | 1.0               | 0.38           | 1      |          | Ethyl-t-Buty           | /I Ether (ETB    | E)           | ND             | 2.0             | 0.27                 | 1          |       |
| 1,3-Dichloropropane         | ND              | 1.0               | 0.38           | 1      |          | Tert-Amyl-I            | Methyl Ether (   | (TAME)       | ND             | 2.0             | 0.28                 | 1          |       |
| 2,2-Dichloropropane         | ND              | 1.0               | 0.46           | 1      |          | Ethanol                |                  | •            | ND             | 100             | 50                   | 1          |       |
| Surrogates:                 | REC (%)         | Control<br>Limits | <u>Qua</u>     | l      |          | Surrogates             | <u>.</u>         |              | REC (%)        | Contr<br>Limits |                      | <u>ual</u> |       |
| Dibromofluoromethane        | 106             | 80-126            |                |        |          | 1.2-Dichlor            | oethane-d4       |              | 101            | 80-13           | •                    |            |       |
| Toluene-d8                  | 98              | 80-120            |                |        |          | •                      | luorobenzene     | <u> </u>     | 92             | 80-12           |                      |            |       |
| i diddlio do                | 50              | 00 120            |                |        |          | וטוווטום-ד,ו           | 14010001120110   | •            | J <u>L</u>     | 00 12           |                      |            |       |

RL - Reporting Limit ,

it , DF - Dilution Factor , Qual - Qualifiers



# **Quality Control - Spike/Spike Duplicate**



AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200

Newport Beach, CA 92663-3627

Date Received: Work Order No: Preparation: Method: 06/25/10 10-06-2057 EPA 5030B EPA 8015B (M)

#### Project SFPP - Norwalk Site

| Quality Control Sample ID | Matrix  | Instrument | Date<br>Prepared |            | Date<br>Analyzed | MS/MSD Batch<br>Number |
|---------------------------|---------|------------|------------------|------------|------------------|------------------------|
| 10-06-2235-1              | Aqueous | GC 18      | 07/01/10         |            | 07/01/10         | 100701S01              |
| <u>Parameter</u>          | MS %REC | MSD %REC   | %REC CL          | <u>RPD</u> | RPD CL           | Qualifiers             |
| TPH as Gasoline           | 95      | 98         | 68-122           | 3          | 0-18             |                        |

MMM\_



# **Quality Control - Spike/Spike Duplicate**



AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200

Newport Beach, CA 92663-3627

Date Received: Work Order No: Preparation: Method: 06/25/10 10-06-2057 EPA 5030B EPA 8260B

Project SFPP - Norwalk Site

| Quality Control Sample ID     | Matrix  | Instrument | Date<br>Prepared |     | Date<br>Analyzed | MS/MSD Batch<br>Number |
|-------------------------------|---------|------------|------------------|-----|------------------|------------------------|
| 10-06-1589-7                  | Aqueous | GC/MS S    | 06/25/10         |     | 06/26/10         | 100625S02              |
|                               |         |            |                  |     |                  |                        |
| <u>Parameter</u>              | MS %REC | MSD %REC   | %REC CL          | RPD | RPD CL           | Qualifiers             |
| Benzene                       | 105     | 101        | 80-120           | 4   | 0-20             |                        |
| Carbon Tetrachloride          | 94      | 92         | 55-151           | 2   | 0-20             |                        |
| Chlorobenzene                 | 100     | 97         | 80-120           | 3   | 0-20             |                        |
| 1,2-Dibromoethane             | 108     | 104        | 77-125           | 4   | 0-20             |                        |
| 1,2-Dichlorobenzene           | 101     | 101        | 78-120           | 1   | 0-20             |                        |
| 1,2-Dichloroethane            | 101     | 97         | 80-120           | 4   | 0-20             |                        |
| 1,1-Dichloroethene            | 95      | 91         | 69-129           | 4   | 0-20             |                        |
| Ethylbenzene                  | 110     | 107        | 73-127           | 3   | 0-20             |                        |
| Toluene                       | 106     | 101        | 80-120           | 4   | 0-20             |                        |
| Trichloroethene               | 101     | 99         | 67-133           | 2   | 0-20             |                        |
| Vinyl Chloride                | 96      | 96         | 67-133           | 0   | 0-20             |                        |
| Methyl-t-Butyl Ether (MTBE)   | 105     | 102        | 65-131           | 2   | 0-22             |                        |
| Tert-Butyl Alcohol (TBA)      | 113     | 110        | 62-134           | 2   | 0-20             |                        |
| Diisopropyl Ether (DIPE)      | 108     | 105        | 64-136           | 3   | 0-29             |                        |
| Ethyl-t-Butyl Ether (ETBE)    | 108     | 106        | 70-124           | 1   | 0-20             |                        |
| Tert-Amyl-Methyl Ether (TAME) | 110     | 106        | 71-125           | 4   | 0-20             |                        |
| Ethanol                       | 92      | 96         | 44-152           | 5   | 0-43             |                        |

MMM\_





AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Newport Beach, CA 92663-3627 Date Received: Work Order No: Preparation: Method: N/A 10-06-2057 EPA 3510C EPA 8015B (M)

Project: SFPP - Norwalk Site

| Quality Control Sample ID | Matrix  | Instrument | Date<br>Prepared | Da<br>d Anal |            | LCS/LCSD Bato<br>Number | h          |
|---------------------------|---------|------------|------------------|--------------|------------|-------------------------|------------|
| 099-12-384-27             | Aqueous | GC 27      | 06/28/10         | 06/29        | 9/10       | 100628B06               |            |
|                           |         |            |                  |              |            |                         |            |
| <u>Parameter</u>          | LCS %   | REC LCSD   | %REC             | %REC CL      | <u>RPD</u> | RPD CL                  | Qualifiers |
| TPH as Fuel Product       | 113     | 10         | 9                | 75-117       | 4          | 0-13                    |            |

MANA\_





AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Newport Beach, CA 92663-3627 Date Received: Work Order No: Preparation: Method:

10-06-2057 EPA 5030B EPA 8015B (M)

N/A

Project: SFPP - Norwalk Site

| Quality Control Sample ID | Matrix  | Instrument | Date<br>Prepared | Date<br>Analyz      |            | LCS/LCSD Bato<br>Number | h          |
|---------------------------|---------|------------|------------------|---------------------|------------|-------------------------|------------|
| 099-12-247-4,318          | Aqueous | GC 18      | 07/01/10         | 07/01/ <sup>-</sup> | 10         | 100701B01               |            |
|                           |         |            |                  |                     |            |                         |            |
| <u>Parameter</u>          | LCS %   | REC LCSD   | %REC %           | REC CL              | <u>RPD</u> | RPD CL                  | Qualifiers |
| TPH as Gasoline           | 94      | 95         |                  | 78-120              | 1          | 0-10                    |            |

MANA\_

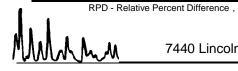




AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Date Received: Work Order No: Preparation: Method: N/A 10-06-2057 EPA 5030B EPA 8260B

Newport Beach, CA 92663-3627

Project: SFPP - Norwalk Site


| Quality Control Sample ID     | Matrix   | Instrument | Date<br>Prepared | Date<br>Analyzed |     | LCS/LCSD<br>Numbe |            |
|-------------------------------|----------|------------|------------------|------------------|-----|-------------------|------------|
| 099-14-001-1,256              | Aqueous  | GC/MS S    | 06/25/10         | 06/26            | /10 | 100625L           | 03         |
| <u>Parameter</u>              | LCS %REC | LCSD %REC  | %REC CL          | ME CL            | RPD | RPD CL            | Qualifiers |
| Benzene                       | 109      | 104        | 80-120           | 73-127           | 5   | 0-20              |            |
| Carbon Tetrachloride          | 95       | 91         | 67-139           | 55-151           | 3   | 0-22              |            |
| Chlorobenzene                 | 105      | 98         | 80-120           | 73-127           | 7   | 0-20              |            |
| 1,2-Dibromoethane             | 110      | 105        | 80-120           | 73-127           | 5   | 0-20              |            |
| 1,2-Dichlorobenzene           | 113      | 107        | 79-120           | 72-127           | 5   | 0-20              |            |
| 1,2-Dichloroethane            | 97       | 92         | 80-120           | 73-127           | 5   | 0-20              |            |
| 1,1-Dichloroethene            | 96       | 94         | 71-125           | 62-134           | 2   | 0-25              |            |
| Ethylbenzene                  | 117      | 110        | 80-123           | 73-130           | 6   | 0-20              |            |
| Toluene                       | 109      | 104        | 80-120           | 73-127           | 5   | 0-20              |            |
| Trichloroethene               | 108      | 100        | 80-120           | 73-127           | 8   | 0-20              |            |
| Vinyl Chloride                | 104      | 98         | 68-140           | 56-152           | 5   | 0-23              |            |
| Methyl-t-Butyl Ether (MTBE)   | 111      | 110        | 75-123           | 67-131           | 1   | 0-25              |            |
| Tert-Butyl Alcohol (TBA)      | 119      | 113        | 72-126           | 63-135           | 5   | 0-20              |            |
| Diisopropyl Ether (DIPE)      | 113      | 114        | 75-129           | 66-138           | 1   | 0-22              |            |
| Ethyl-t-Butyl Ether (ETBE)    | 122      | 120        | 76-124           | 68-132           | 2   | 0-20              |            |
| Tert-Amyl-Methyl Ether (TAME) | 117      | 113        | 79-121           | 72-128           | 4   | 0-20              |            |
| Ethanol                       | 97       | 83         | 53-143           | 38-158           | 15  | 0-25              |            |

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass





## **Glossary of Terms and Qualifiers**



Work Order Number: 10-06-2057

| Qualifier | <u>Definition</u>                                                                                                                                                                                                                                      |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| *         | See applicable analysis comment.                                                                                                                                                                                                                       |
| <         | Less than the indicated value.                                                                                                                                                                                                                         |
| >         | Greater than the indicated value.                                                                                                                                                                                                                      |
| 1         | Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.                                                                                               |
| 2         | Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.                             |
| 3         | Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.    |
| 4         | The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.                                                                              |
| 5         | The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification. |
| В         | Analyte was present in the associated method blank.                                                                                                                                                                                                    |
| Е         | Concentration exceeds the calibration range.                                                                                                                                                                                                           |
| J         | Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.                                                                                                        |
| ME        | LCS Recovery Percentage is within LCS ME Control Limit range.                                                                                                                                                                                          |
| ND        | Parameter not detected at the indicated reporting limit.                                                                                                                                                                                               |
| Q         | Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.                                                                          |
| Χ         | % Recovery and/or RPD out-of-range.                                                                                                                                                                                                                    |
| Z         | Analyte presence was not confirmed by second column or GC/MS analysis.                                                                                                                                                                                 |
|           | Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.                                                                                                                                 |

| لَّ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | alscience .                                                           | 7440 LINCOLN WAY                                                                            |                  |                                      |             |                          |                                    |                |                |              |             |               |                           | Ŧ<br>S      | Z        | P CUSTOL     | CHAIN OF CUSTODY RECORD |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------|--------------------------------------|-------------|--------------------------|------------------------------------|----------------|----------------|--------------|-------------|---------------|---------------------------|-------------|----------|--------------|-------------------------|
| М.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nvironmental                                                          | GARDEN GROVE, CA 92841-1432                                                                 | 141-1432         |                                      |             |                          |                                    |                |                |              |             |               |                           | DATE        |          | 56-25        | <i>رار</i>              |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | aboratories, Inc.                                                     | TEL: (714) 895-5494 . FAX:                                                                  | : (714) 894-7501 | 7501                                 |             |                          |                                    |                |                |              |             |               |                           | PAGE:       |          | 1 OF         | 1                       |
| LABOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LABORATORY CLIENT:                                                    |                                                                                             |                  |                                      | ١           | ľ                        | CLIENT PROJECT NAME / NUMBER       | ROJECT         | VAME / N       | MBER         |             |               |                           |             |          | .04          |                         |
| Sinde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | er Morgan Energy                                                      | Kinder Morgan Energy Partners, Attn: Steve Defibaugh                                        | efibaugh         |                                      |             |                          | ŗ                                  | 2              | =              | i            |             |               |                           |             |          |              |                         |
| 408<br>130<br>130<br>130<br>130<br>130<br>130<br>130<br>130<br>130<br>130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ADDRESS: 1100 Town & Country Road                                     | oad                                                                                         |                  |                                      |             | •                        | PROJECT CONTACT                    | SPECT CONTACT: | Haik           | ole<br>ole   |             |               |                           |             |          | QUOTE NO.:   |                         |
| CITY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |                                                                                             |                  |                                      |             |                          | James Dye                          | es Dy          | 0              | $\mathbb{N}$ |             | N             |                           |             |          |              |                         |
| Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Drange, CA 92868                                                      | >*L                                                                                         |                  |                                      |             |                          | SAMPLE                             | (S): (S)       | ATURE)         | · '          | $\setminus$ | /             | 1                         | $\setminus$ |          |              |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 714-560-4802                                                          | 714-560-4601                                                                                | _                | E-MAIL<br>james dye@kindermorgan.com | kindermorga | n.com                    | 1                                  | 1              | 7 7            | $\setminus$  |             | $\langle \  $ | $\setminus$               |             |          | 10012        | [या गाजा म              |
| JERNA<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       | [                                                                                           | ı                | _                                    |             |                          |                                    | N.             |                | !            | œ           | EOU           | REQUESTED                 |             | ANALYSIS | SIS          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAME DAY 24 HR 48HR SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY) | 48HR 72 HR                                                                                  | 5 DAYS           | _                                    | 10 DAYS     | Ş                        |                                    | I              | ŀ              | (            |             | }             | •                         |             |          |              |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RWQCB REPORTING                                                       | ARCHIVE SAMPLES                                                                             | SUNTIL           | _                                    | _           | 7                        | <u> </u>                           |                |                | 8092         |             |               |                           |             |          |              |                         |
| SPECIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SPECIAL INSTRUCTIONS                                                  |                                                                                             |                  |                                      |             |                          |                                    |                |                | 8)X          |             |               |                           |             |          |              |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oort to A. Padilla at<br>ect Bill KMEP/SFPF                           | Report to A. Padilla at Geomatrix, cc: KMEP<br>Direct Bill KMEP/SFPP - Steve Defibaugh-ref. | f. AFE# 81195    | 1195                                 |             |                          |                                    |                | (M             |              |             | (2.08         | (0)                       |             |          |              |                         |
| ٩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | flags required/Use                                                    | J. flags required/Use lowest possible detection limit - all methods.                        | ction limi       | :- a<br>  <br>                       | ethods      | _                        |                                    | (8             | 2108)          |              | (5.0        | t) sbi        | :09 66                    | -           |          |              |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                                                             | SAMPLING         | LING                                 |             | NO. OF                   | <del></del>                        | 928            |                |              | 91) s       |               |                           |             |          |              |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       | i                                                                                           |                  |                                      |             |                          |                                    |                |                |              | sbilo       |               |                           |             |          |              |                         |
| LAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE ID                                                             | DESCRIPTION                                                                                 | DATE             | TIME                                 | RIX -       | ·                        | .08) g - Hq<br>108) qì-Hq          | OCs, Full      | il & Greas<br> | PH-g (C5-0   | ettleable S | otal Suspe    | henolics (<br>D,(IV)TO,gl | o muinala   |          | •            |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | INF. 66-25                                                            | Influent                                                                                    | 01-5%-00         | 1140                                 | WM          | ^                        | -                                  | <del>-</del>   | +-             | +            | S           |               | +                         | _           | Ė        | Temperature* | re* = 79.4              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                                                             |                  |                                      |             |                          |                                    |                | -              | <u> </u>     |             | <u> </u>      |                           |             |          |              |                         |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                       |                                                                                             |                  |                                      |             |                          |                                    |                |                | -            |             | $\vdash$      | -                         | -           |          | (Temp. as    | s sampled*)             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                                                             |                  | <u>.</u>                             |             |                          |                                    |                |                |              |             |               |                           |             |          |              |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                                                             |                  |                                      |             |                          |                                    |                |                |              |             | <del> </del>  | -                         |             |          | Monthly      |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                                                             |                  |                                      |             |                          |                                    |                |                |              |             |               |                           |             |          |              |                         |
| enterodos<br>A de la composición de<br>La composición de la composición de la<br>La composición de la composici |                                                                       |                                                                                             |                  |                                      |             |                          |                                    |                |                | ļ            |             |               | _                         |             |          |              |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                                                             |                  |                                      |             |                          |                                    |                | <u></u>        |              |             | <del> </del>  | -                         | <u> </u>    |          |              |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                                                             |                  |                                      |             |                          |                                    |                |                |              |             |               | -                         |             |          |              |                         |
| Relinqu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | elinquished by (Sigpature)                                            | 1                                                                                           |                  |                                      | Receive     | d by: (Si                | Received by: (Signature) $partine$ | 201            | 72.0           | 7            |             | 12            | ,                         |             |          | Date: 125/10 | Time: 75                |
| Refinqu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Refinquished by: (Signature)                                          |                                                                                             |                  |                                      | Receive     | Received by: (Signature) | gnature)                           |                |                |              |             |               |                           |             |          | Date: (      | Time:                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Relinquished by: (Signature)                                          |                                                                                             |                  |                                      | Receive     | Received by: (Signature) | gnature)                           |                |                |              |             |               |                           |             |          | Date:        | Time:                   |
| Sevis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sevised: 07/23/09                                                     |                                                                                             |                  |                                      |             | l                        | ŀ                                  |                |                |              |             |               |                           |             |          |              |                         |



WORK ORDER #: 10-06- ☑ ☑ ☑ ☑

# SAMPLE RECEIPT FORM Cooler \_\_\_\_ of \_\_\_\_

| CLIENT: KMEP DATI                                                                                                                                                  | e: <u>06</u> / | 125/10              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|
| TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C - 6.0 °C, not frozen)  Temperature                                                                              | ampling.       | ample<br>nitial:¤_C |
| CUSTODY SEALS INTACT:  Cooler                                                                                                                                      |                | nitial: <u>bL</u>   |
| SAMPLE CONDITION:  Chain-Of-Custody (COC) document(s) received with samples.                                                                                       | <b>No</b>      | N/A                 |
| ☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels. ☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished. |                |                     |
| Sampler's name indicated on COC                                                                                                                                    |                |                     |
| Sample container(s) intact and good condition                                                                                                                      |                |                     |
| Proper containers and sufficient volume for analyses requested                                                                                                     |                |                     |
| Analyses received within holding time                                                                                                                              | · 🗀            |                     |
| pH / Residual Chlorine / Dissolved Sulfide received within 24 hours                                                                                                |                | 6                   |
| Proper preservation noted on COC or sample container                                                                                                               |                |                     |
| ☐ Unpreserved vials received for Volatiles analysis                                                                                                                |                |                     |
| Volatile analysis container(s) free of headspace                                                                                                                   |                |                     |
| Tedlar bag(s) free of condensation   CONTAINER TYPE:                                                                                                               |                | <u>.</u> d          |
| Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores® □T                                                                                                            |                |                     |
| Water: □VOA ŽVOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1A0                                                                                                           | B □1AGE        | na₂ □1AGBs          |
| □500AGB Ø500AGJ □500AGJs □250AGB □250CGB □250CGBs □1F                                                                                                              | PB □500P       | B □500PB <b>na</b>  |
| □250PB □250PBn □125PB □125PB <b>znna</b> □100PJ □100PJ <b>na<sub>2</sub></b> □                                                                                     |                |                     |
| Air: □Tedlar <sup>®</sup> □Summa <sup>®</sup> Other: □ Trip Blank Lot#: Labe                                                                                       | eled/Checke    | d by:               |
| Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope                                                             | Reviewe        | d by: W             |

Preservative: h: HCL n: HNO<sub>3</sub> na<sub>2</sub>:Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> na: NaOH p: H<sub>3</sub>PO<sub>4</sub> s: H<sub>2</sub>SO<sub>4</sub> znna: ZnAc<sub>2</sub>+NaOH f: Field-filtered Scanned by:



**VAPOR** 





May 11, 2010

Alex Padilla
AMEC Geomatrix, Inc.
510 Superior Avenue
Suite 200
Newport Beach, CA 92663-3627

Subject: Calscience Work Order No.: 10-05-0152

Client Reference: SFPP - Norwalk Site

#### Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 05/04/2010 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely.

Calscience Environmental Laboratories, Inc.

Stephen Nowak Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501





AMEC Geomatrix, Inc. 510 Superior Avenue

Suite 200 Newport Beach, CA 92663-3627 Date Received: Work Order No: Preparation:

05/04/10 10-05-0152 N/A

Method: **ASTM D-1946** Units:

%v

Project: SFPP - Norwalk Site

Page 1 of 1

| Client Sample Number | Lab Sample<br>Number | Date/Time<br>Collected | Matrix | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|----------------------|----------------------|------------------------|--------|------------|------------------|-----------------------|-------------|
| INF-05-04            | 10-05-0152-1-A       | 05/04/10<br>11:55      | Air    | GC 36      | N/A              | 05/04/10<br>00:00     | 100504L01   |

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

Parameter Result **MDL** <u>DF</u> Qual Parameter **MDL** <u>DF</u> Qual Methane ND 0.500 0.370 0.500 0.0981 Oxygen + Argon 21.4 Carbon Dioxide 0.442 0.500 0.344 1

05/04/10 **Method Blank** 099-03-002-1,041 N/A Air **GC 36** N/A 100504L01 00:00

-Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag. Comment(s):

Result RL MDL DF Qual Parameter RL **MDL** DF Qual Parameter 0.500 0.0981 1 0.500 0.370 Methane ND Oxygen + Argon ND ND 0.500 0.344 Carbon Dioxide





AMEC Geomatrix, Inc. Date Received: 05/04/10 510 Superior Avenue Work Order No: 10-05-0152 Suite 200 Preparation: N/A Newport Beach, CA 92663-3627 Method: EPA TO-3M

Proiect: SFPP - Norwalk Site Page 1 of 1

| 110,000. 0111 140         | Walk Oilo              |                 |               |                        |               |                   |                  | •                     | ago 1 01 1  |
|---------------------------|------------------------|-----------------|---------------|------------------------|---------------|-------------------|------------------|-----------------------|-------------|
| Client Sample Number      |                        | Lab Sai<br>Numb | •             | Date/Time<br>Collected | Matrix        | Instrument        | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
| INF-05-04                 |                        | 10-05-          | 0152-1-A      | 05/04/10<br>11:55      | Air           | GC 13             | N/A              | 05/04/10<br>16:33     | 100504L01   |
| Comment(s): -Results were | e evaluated to the MDL | , concentration | s >= to the N | IDL but < RL           | , if found, a | are qualified wit | h a "J" flag.    |                       |             |
| <u>Parameter</u>          | Result                 | <u>RL</u>       | MDL           | <u>1</u>               | <u>DF</u>     | <u>Qual</u>       | <u>Units</u>     |                       |             |
| TPH as Gasoline           | 13                     | 1.5             | 0.17          | 1                      |               |                   | ppm (v/v)        |                       |             |
| Method Blank              |                        | 098-01          | 1-005-2,268   | N/A                    | Air           | GC 13             | N/A              | 05/04/10<br>08:50     | 100504L01   |
| Comment(s): -Results were | e evaluated to the MDL | , concentration | s >= to the N | IDL but < RL           | , if found, a | are qualified wit | h a "J" flag.    |                       |             |
| Parameter Parameter       | Result                 | <u>RL</u>       | <u>MDL</u>    | <u> 1</u>              | <u>DF</u>     | <u>Qual</u>       | <u>Units</u>     |                       |             |
| TPH as Gasoline           | ND                     | 1.5             | 0.17          | 1                      |               |                   | ppm (v/v)        |                       |             |

DF - Dilution Factor

Qual - Qualifiers





AMEC Geomatrix, Inc. 510 Superior Avenue

Suite 200

Newport Beach, CA 92663-3627

Date Received: Work Order No: Preparation:

10-05-0152

Method: **EPA TO-15M** Units:

ppb (v/v)

05/04/10

N/A

Project: SFPP - Norwalk Site

Page 1 of 2

| INF-05-04            | 10-05-0152-1-A       | 05/04/10<br>11:55      | Air    | GC/MS ZZ   | N/A              | 05/04/10<br>23:42     | 100504L01   |
|----------------------|----------------------|------------------------|--------|------------|------------------|-----------------------|-------------|
| Client Sample Number | Lab Sample<br>Number | Date/Time<br>Collected | Matrix | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-The method has been modified to use Tedlar bags instead of Summa Canisters.

| <u>Parameter</u>          | Result  | <u>RL</u>     | <u>MDL</u>  | DF 0 | Qual | <u>Parameter</u>                      | Result  | <u>RL</u>     | <u>MDL</u> | <u>DF</u> | Qual |
|---------------------------|---------|---------------|-------------|------|------|---------------------------------------|---------|---------------|------------|-----------|------|
| Acetone                   | ND      | 160           | 80          | 3.2  |      | t-1,2-Dichloroethene                  | ND      | 1.6           | 0.60       | 3.2       |      |
| Benzene                   | 100     | 1.6           | 0.30        | 3.2  |      | t-1,3-Dichloropropene                 | ND      | 3.2           | 0.33       | 3.2       |      |
| Benzyl Chloride           | ND      | 4.8           | 1.3         | 3.2  |      | Ethylbenzene                          | 42      | 1.6           | 0.36       | 3.2       |      |
| Bromodichloromethane      | ND      | 1.6           | 0.33        | 3.2  |      | 4-Ethyltoluene                        | 13      | 1.6           | 0.58       | 3.2       |      |
| Bromoform                 | ND      | 1.6           | 0.49        | 3.2  |      | Hexachloro-1,3-Butadiene              | ND      | 4.8           | 0.58       | 3.2       |      |
| Bromomethane              | ND      | 1.6           | 0.30        | 3.2  |      | 2-Hexanone                            | ND      | 4.8           | 1.7        | 3.2       |      |
| 2-Butanone                | 7.1     | 4.8           | 0.32        | 3.2  |      | Methyl-t-Butyl Ether (MTBE)           | 3.4     | 6.4           | 0.38       | 3.2       | J    |
| Carbon Disulfide          | ND      | 32            | 16          | 3.2  |      | Methylene Chloride                    | ND      | 16            | 3.2        | 3.2       |      |
| Carbon Tetrachloride      | ND      | 1.6           | 0.32        | 3.2  |      | 4-Methyl-2-Pentanone                  | ND      | 4.8           | 0.48       | 3.2       |      |
| Chlorobenzene             | ND      | 1.6           | 0.35        | 3.2  |      | o-Xylene                              | 62      | 1.6           | 0.39       | 3.2       |      |
| Chloroethane              | ND      | 1.6           | 0.49        | 3.2  |      | p/m-Xylene                            | 160     | 6.4           | 2.4        | 3.2       |      |
| Chloroform                | ND      | 1.6           | 0.29        | 3.2  |      | Styrene                               | ND      | 4.8           | 0.57       | 3.2       |      |
| Chloromethane             | ND      | 1.6           | 0.31        | 3.2  |      | Tetrachloroethene                     | ND      | 1.6           | 0.35       | 3.2       |      |
| Dibromochloromethane      | ND      | 1.6           | 0.36        | 3.2  |      | Toluene                               | 170     | 16            | 6.4        | 3.2       |      |
| Dichlorodifluoromethane   | ND      | 1.6           | 0.46        | 3.2  |      | Trichloroethene                       | 0.73    | 1.6           | 0.34       | 3.2       | J    |
| 1,1-Dichloroethane        | ND      | 1.6           | 0.33        | 3.2  |      | Trichlorofluoromethane                | ND      | 3.2           | 0.25       | 3.2       |      |
| 1,1-Dichloroethene        | ND      | 1.6           | 0.35        | 3.2  |      | 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND      | 4.8           | 0.32       | 3.2       |      |
| 1,2-Dibromoethane         | ND      | 1.6           | 0.36        | 3.2  |      | 1,1,1-Trichloroethane                 | ND      | 1.6           | 0.32       | 3.2       |      |
| Dichlorotetrafluoroethane | ND      | 6.4           | 0.35        | 3.2  |      | 1,1,2-Trichloroethane                 | ND      | 1.6           | 0.39       | 3.2       |      |
| 1,2-Dichlorobenzene       | ND      | 1.6           | 0.35        | 3.2  |      | 1,3,5-Trimethylbenzene                | 16      | 1.6           | 0.54       | 3.2       |      |
| 1,2-Dichloroethane        | ND      | 1.6           | 0.30        | 3.2  |      | 1,1,2,2-Tetrachloroethane             | ND      | 3.2           | 0.34       | 3.2       |      |
| 1,2-Dichloropropane       | ND      | 1.6           | 0.37        | 3.2  |      | 1,2,4-Trimethylbenzene                | 36      | 4.8           | 1.0        | 3.2       |      |
| 1,3-Dichlorobenzene       | ND      | 1.6           | 0.42        | 3.2  |      | 1,2,4-Trichlorobenzene                | ND      | 6.4           | 2.3        | 3.2       |      |
| 1,4-Dichlorobenzene       | ND      | 1.6           | 0.43        | 3.2  |      | Vinyl Acetate                         | ND      | 6.4           | 1.5        | 3.2       |      |
| c-1,3-Dichloropropene     | ND      | 1.6           | 0.45        | 3.2  |      | Vinyl Chloride                        | ND      | 1.6           | 0.32       | 3.2       |      |
| c-1,2-Dichloroethene      | ND      | 1.6           | 0.42        | 3.2  |      |                                       |         |               |            |           |      |
| Surrogates:               | REC (%) | Control       | <u>Qual</u> |      |      | Surrogates:                           | REC (%) | Control       | <u>Qua</u> | <u> </u>  |      |
|                           |         | <u>Limits</u> |             |      |      |                                       |         | <u>Limits</u> |            |           |      |
| 1,4-Bromofluorobenzene    | 106     | 57-129        |             |      |      | 1,2-Dichloroethane-d4                 | 100     | 47-137        |            |           |      |
| Toluene-d8                | 99      | 78-156        |             |      |      |                                       |         |               |            |           |      |

RL - Reporting Limit ,

DF - Dilution Factor , Qual - Qualifiers





AMEC Geomatrix, Inc. 510 Superior Avenue

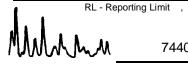
Suite 200

Newport Beach, CA 92663-3627

Project: SFPP - Norwalk Site

Date Received: Work Order No: Preparation: Method:

Units:


05/04/10 10-05-0152

N/A EPA TO-15M

ppb (v/v)

Page 2 of 2

| Client Sample Number      |                   |                   | Lab S<br>Num |           |          | Date/Time<br>Collected | Matrix       | Instrument     | Date<br>Prepar |                   | e/Time<br>alyzed | QC Bate   | ch ID |
|---------------------------|-------------------|-------------------|--------------|-----------|----------|------------------------|--------------|----------------|----------------|-------------------|------------------|-----------|-------|
| Method Blank              |                   |                   | 099-1        | 2-981-5   | 09       | N/A                    | Air          | GC/MS ZZ       | N/A            |                   | /04/10<br>2:15   | 100504    | L01   |
| Comment(s): -Results wer  | e evaluated to th | e MDL, c          | oncentrat    | ions >=   | to the N | MDL but < RL,          | if found, ar | e qualified wi | th a "J" flag  | g.                |                  |           |       |
| <u>Parameter</u>          | <u>Result</u>     | <u>RL</u>         | <u>MDL</u>   | <u>DF</u> | Qual     | <u>Parameter</u>       |              |                | Result         | <u>RL</u>         | <u>MDL</u>       | <u>DF</u> | Qual  |
| Acetone                   | ND                | 50                | 25           | 1         |          | t-1,2-Dichlor          | oethene      |                | ND             | 0.50              | 0.19             | 1         |       |
| Benzene                   | ND                | 0.50              | 0.094        | 1         |          | t-1,3-Dichlor          | opropene     |                | ND             | 1.0               | 0.10             | 1         |       |
| Benzyl Chloride           | ND                | 1.5               | 0.39         | 1         |          | Ethylbenzen            | е            |                | ND             | 0.50              | 0.11             | 1         |       |
| Bromodichloromethane      | ND                | 0.50              | 0.10         | 1         |          | 4-Ethyltolue           | ne           |                | ND             | 0.50              | 0.18             | 1         |       |
| Bromoform                 | ND                | 0.50              | 0.15         | 1         |          | Hexachloro-            | 1,3-Butadie  | ne             | ND             | 1.5               | 0.18             | 1         |       |
| Bromomethane              | ND                | 0.50              | 0.093        | 1         |          | 2-Hexanone             |              |                | ND             | 1.5               | 0.52             | 1         |       |
| 2-Butanone                | ND                | 1.5               | 0.099        | 1         |          | Methyl-t-But           | yl Ether (M  | ГВЕ)           | ND             | 2.0               | 0.12             | 1         |       |
| Carbon Disulfide          | ND                | 10                | 5.0          | 1         |          | Methylene C            | hloride      |                | ND             | 5.0               | 1.0              | 1         |       |
| Carbon Tetrachloride      | ND                | 0.50              | 0.098        | 1         |          | 4-Methyl-2-F           | Pentanone    |                | ND             | 1.5               | 0.15             | 1         |       |
| Chlorobenzene             | ND                | 0.50              | 0.11         | 1         |          | o-Xylene               |              |                | ND             | 0.50              | 0.12             | 1         |       |
| Chloroethane              | ND                | 0.50              | 0.15         | 1         |          | p/m-Xylene             |              |                | ND             | 2.0               | 0.76             | 1         |       |
| Chloroform                | ND                | 0.50              | 0.090        | 1         |          | Styrene                |              |                | ND             | 1.5               | 0.18             | 1         |       |
| Chloromethane             | ND                | 0.50              | 0.098        | 1         |          | Tetrachloroe           | ethene       |                | ND             | 0.50              | 0.11             | 1         |       |
| Dibromochloromethane      | ND                | 0.50              | 0.11         | 1         |          | Toluene                |              |                | ND             | 5.0               | 2.0              | 1         |       |
| Dichlorodifluoromethane   | ND                | 0.50              | 0.14         | 1         |          | Trichloroeth           | ene          |                | ND             | 0.50              | 0.11             | 1         |       |
| 1,1-Dichloroethane        | ND                | 0.50              | 0.10         | 1         |          | Trichlorofluc          | romethane    |                | ND             | 1.0               | 0.077            | 1         |       |
| 1,1-Dichloroethene        | ND                | 0.50              | 0.11         | 1         |          | 1,1,2-Trichlo          | oro-1,2,2-Tr | ifluoroethane  | ND             | 1.5               | 0.10             | 1         |       |
| 1,2-Dibromoethane         | ND                | 0.50              | 0.11         | 1         |          | 1,1,1-Trichle          | oroethane    |                | ND             | 0.50              | 0.10             | 1         |       |
| Dichlorotetrafluoroethane | ND                | 2.0               | 0.11         | 1         |          | 1,1,2-Trichlo          | oroethane    |                | ND             | 0.50              | 0.12             | 1         |       |
| 1,2-Dichlorobenzene       | ND                | 0.50              | 0.11         | 1         |          | 1,3,5-Trimet           | hylbenzene   |                | ND             | 0.50              | 0.17             | 1         |       |
| 1,2-Dichloroethane        | ND                | 0.50              | 0.095        | 1         |          | 1,1,2,2-Tetra          | achloroetha  | ne             | ND             | 1.0               | 0.11             | 1         |       |
| 1,2-Dichloropropane       | ND                | 0.50              | 0.11         | 1         |          | 1,2,4-Trimet           | hylbenzene   |                | ND             | 1.5               | 0.33             | 1         |       |
| 1,3-Dichlorobenzene       | ND                | 0.50              | 0.13         | 1         |          | 1,2,4-Trichlo          | orobenzene   |                | ND             | 2.0               | 0.72             | 1         |       |
| 1,4-Dichlorobenzene       | ND                | 0.50              | 0.13         | 1         |          | Vinyl Acetat           | е            |                | ND             | 2.0               | 0.45             | 1         |       |
| c-1,3-Dichloropropene     | ND                | 0.50              | 0.14         | 1         |          | Vinyl Chloric          | de           |                | ND             | 0.50              | 0.10             | 1         |       |
| c-1,2-Dichloroethene      | ND                | 0.50              | 0.13         | 1         |          | •                      |              |                |                |                   |                  |           |       |
| Surrogates:               | <u>REC (%)</u>    | Control<br>Limits | <u>Qu</u>    | <u>al</u> |          | Surrogates:            |              |                | REC (%)        | Control<br>Limits | <u>Q</u>         | ual       |       |
| 1,4-Bromofluorobenzene    | 100               | 57-129            |              |           |          | 1,2-Dichloro           | ethane-d4    |                | 100            | 47-137            |                  |           |       |
| Toluene-d8                | 97                | 78-156            |              |           |          |                        |              |                |                |                   |                  |           |       |



imit , DF - Dilution Factor , Qual - Qualifiers



# **Quality Control - Duplicate**



AMEC Geomatrix, Inc. 510 Superior Avenue

Suite 200

Newport Beach, CA 92663-3627

Date Received: Work Order No: Preparation:

05/04/10 10-05-0152 N/A EPA TO-3M

Method:

Project: SFPP - Norwalk Site

| Quality Control Sample ID | Matrix      | Instrument | Date<br>Prepared: | Date<br>Analyzed: | Duplicate Batch<br>Number |
|---------------------------|-------------|------------|-------------------|-------------------|---------------------------|
| 10-05-0083-1              | Air         | GC 13      | N/A               | 05/04/10          | 100504D01                 |
|                           |             |            |                   |                   | _                         |
| <u>Parameter</u>          | Sample Conc | DUP Conc   | <u>RPD</u>        | RPD CL            | <u>Qualifiers</u>         |
| TPH as Gasoline           | 7.2         | 7.4        | 2                 | 0-20              |                           |







AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Newport Beach, CA 92663-3627 Date Received: Work Order No: Preparation: Method:

10-05-0152 N/A ASTM D-1946

N/A

Project: SFPP - Norwalk Site

| Quality Control Sample ID | Matrix | Instrument | Date<br>Prepared | Date<br>Analyzed | _          | CS/LCSD Batch<br>Number | n          |
|---------------------------|--------|------------|------------------|------------------|------------|-------------------------|------------|
| 099-03-002-1,041          | Air    | GC 36      | N/A              | 05/04/10         |            | 100504L01               |            |
|                           |        |            |                  |                  |            |                         |            |
| <u>Parameter</u>          | LCS %R | REC LCSD % | REC %            | REC CL           | <u>RPD</u> | RPD CL                  | Qualifiers |
| Carbon Dioxide            | 107    | 107        |                  | 80-120           | 0          | 0-30                    |            |
| Oxygen + Argon            | 98     | 97         |                  | 80-120           | 1          | 0-30                    |            |
| Nitrogen                  | 98     | 97         |                  | 80-120           | 1          | 0-30                    |            |

RPD - Relative Percent Difference , CL - Control Limit



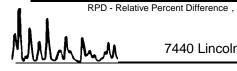


AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Newport Beach, CA 92663-3627 Date Received: Work Order No: Preparation: Method:

10-05-0152 N/A EPA TO-15M

N/A

Project: SFPP - Norwalk Site


| Quality Control Sample ID | Matrix   | Instrument | Date<br>Prepared | Da<br>Anal |             | LCS/LCSD E<br>Number |            |
|---------------------------|----------|------------|------------------|------------|-------------|----------------------|------------|
| 099-12-981-509            | Air      | GC/MS ZZ   | N/A              | 05/04      | <b>/</b> 10 | 100504L0             | 01         |
| <u>Parameter</u>          | LCS %REC | LCSD %REC  | %REC CL          | ME CL      | RPD         | RPD CL               | Qualifiers |
| Benzene                   | 93       | 90         | 60-156           | 44-172     | 4           | 0-40                 |            |
| Carbon Tetrachloride      | 99       | 96         | 64-154           | 49-169     | 3           | 0-32                 |            |
| 1,2-Dibromoethane         | 98       | 98         | 54-144           | 39-159     | 0           | 0-36                 |            |
| 1,2-Dichlorobenzene       | 101      | 98         | 34-160           | 13-181     | 3           | 0-47                 |            |
| 1,2-Dichloroethane        | 96       | 94         | 69-153           | 55-167     | 2           | 0-30                 |            |
| 1,2-Dichloropropane       | 95       | 93         | 67-157           | 52-172     | 2           | 0-35                 |            |
| 1,4-Dichlorobenzene       | 100      | 96         | 36-156           | 16-176     | 4           | 0-47                 |            |
| c-1,3-Dichloropropene     | 103      | 101        | 61-157           | 45-173     | 2           | 0-35                 |            |
| Ethylbenzene              | 97       | 93         | 52-154           | 35-171     | 4           | 0-38                 |            |
| o-Xylene                  | 97       | 93         | 52-148           | 36-164     | 4           | 0-38                 |            |
| p/m-Xylene                | 96       | 92         | 42-156           | 23-175     | 4           | 0-41                 |            |
| Tetrachloroethene         | 96       | 96         | 56-152           | 40-168     | 1           | 0-40                 |            |
| Toluene                   | 96       | 94         | 56-146           | 41-161     | 2           | 0-43                 |            |
| Trichloroethene           | 95       | 92         | 63-159           | 47-175     | 4           | 0-34                 |            |
| 1,1,2-Trichloroethane     | 98       | 96         | 65-149           | 51-163     | 2           | 0-37                 |            |
| Vinyl Chloride            | 92       | 95         | 45-177           | 23-199     | 3           | 0-36                 |            |

Total number of LCS compounds: 16

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass





# **Glossary of Terms and Qualifiers**



Work Order Number: 10-05-0152

| Qualifier<br>* | Definition See applicable analysis comment.                                                                                                                                                                                                            |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <              | Less than the indicated value.                                                                                                                                                                                                                         |
| >              | Greater than the indicated value.                                                                                                                                                                                                                      |
| 1              | Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.                                                                                               |
| 2              | Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.                             |
| 3              | Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.    |
| 4              | The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.                                                                              |
| 5              | The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification. |
| В              | Analyte was present in the associated method blank.                                                                                                                                                                                                    |
| E              | Concentration exceeds the calibration range.                                                                                                                                                                                                           |
| J              | Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.                                                                                                        |
| ME             | LCS Recovery Percentage is within LCS ME Control Limit range.                                                                                                                                                                                          |
| ND             | Parameter not detected at the indicated reporting limit.                                                                                                                                                                                               |
| Q              | Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.                                                                          |
| Χ              | % Recovery and/or RPD out-of-range.                                                                                                                                                                                                                    |
| Z              | Analyte presence was not confirmed by second column or GC/MS analysis.                                                                                                                                                                                 |
|                | Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.                                                                                                                                 |

| Calscience .                                                                                                                                                              | 7440 LINCOLN WAY                                                |                           |                                      |                          |                 |                            |                              |                     |                    |                    | CHAII | <b>と</b>    | CUSTO                 | CHAIN OF CUSTODY RECORD |              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------|--------------------------------------|--------------------------|-----------------|----------------------------|------------------------------|---------------------|--------------------|--------------------|-------|-------------|-----------------------|-------------------------|--------------|
| nvironmentai                                                                                                                                                              | GARDEN GROVE, CA 92841-1432                                     | 41-1432                   |                                      |                          |                 |                            |                              |                     |                    |                    | DATE: | %<br>1      | DATE: 05 - 07 -/ 0    |                         |              |
| Asboratories, Inc.                                                                                                                                                        | TEL: (714) 895-5494 . FAX: (714) 894-7501                       | : (714) 894-7             | 501                                  |                          |                 |                            |                              |                     |                    |                    | PAGE  |             | 1 0F                  | -                       | 1            |
| LABORATORY CLIENT: Kinder Morgan Energy Partners, Attn: Steve D                                                                                                           | artners, Attn: Steve D                                          | efinbough                 | ء ا                                  |                          |                 | ENT PRO                    | CLIENT PROJECT NAME / NUMBER | /NUMBER:            |                    |                    |       |             | P.O. NO.:             |                         | _            |
| ADDRESS:<br>1100 Town & Country Road                                                                                                                                      | pad                                                             |                           |                                      |                          | I I             | SFPP - Nor PROJECT CONTACT | NOTACT:                      | SFPP - Norwalk Site |                    |                    |       |             | QUOTE NO.:            |                         | _            |
| OITY:                                                                                                                                                                     |                                                                 |                           |                                      |                          | <sup>7</sup>  8 | James Dye                  | James Dye                    |                     | 4                  |                    |       |             | NO Ball dy I          | <u> </u>                |              |
| TEL: 714-560-4802                                                                                                                                                         | FAX: 714-560-4601                                               |                           | E-MAIL<br>james dye@kindermorgan.com | ndermorgan.c             | _               | 7                          | 1                            |                     | J                  |                    |       |             | 0-10                  | <u>イロコ</u> 回            | 7 3 1 1      |
| TURNAROUND TIME                                                                                                                                                           | 48HR   72 HR                                                    | 5 D/                      | \\\                                  | 10 DAYS                  |                 |                            |                              |                     | <br>  Ä            | REQUESTED ANALYSIS | ED AN | ALYSI       | S                     |                         | 1            |
| SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY)                                                                                                                         |                                                                 |                           |                                      |                          |                 |                            |                              |                     |                    |                    |       | _           |                       |                         | 1            |
| SPECIAL INSTRUCTIONS                                                                                                                                                      | ARCHIVE SAMPLES UNTIL                                           | SUNIIL                    | ,                                    |                          | Т               |                            |                              |                     |                    |                    |       |             |                       |                         |              |
| Report to A. Padilla at Geomatrix, cc: KMEP Direct Bill KMEP/SFPP - Steve Defibaugh-ref. AFE# 81195 "J" flags required/Use lowest possible detection limit - all methods. | Geomatrix, cc: KMEP - Steve Defibaugh-ref lowest possible deter | f. AFE# 81<br>ction limit | 1195<br>: - all me                   | thods.                   |                 |                            | COS, CH4)                    | ·                   |                    |                    |       |             |                       |                         | i            |
|                                                                                                                                                                           |                                                                 |                           |                                      |                          |                 |                            | 'uol                         | <del></del>         |                    |                    |       | <del></del> |                       |                         |              |
|                                                                                                                                                                           |                                                                 | SAMPLING                  | LING                                 | N O                      | NO. OF<br>CONT. |                            | β1 <b>Α</b> \                |                     |                    |                    |       | · ·         |                       |                         |              |
| SAMPLE ID<br>LAB<br>ÜSE                                                                                                                                                   | LOCATION/<br>DESCRIPTION                                        | DATE                      | TIME                                 | MAT-                     | 31-O            | (p-H9T) &-O                | SO) 8461-MT2                 |                     |                    |                    |       |             |                       |                         |              |
| 1 INF. 65.04                                                                                                                                                              | Influent Vapor to SVE                                           | x5.04.18                  | 1152                                 | į                        | \<br>\<br>\     |                            | / ×                          | ╁-                  | $oldsymbol{\perp}$ |                    | 1     | Mon         | Cor<br>Monthly sample | Comments                |              |
| ı                                                                                                                                                                         |                                                                 |                           |                                      |                          | -               |                            |                              |                     |                    |                    | -     | -           |                       |                         | Т            |
|                                                                                                                                                                           |                                                                 |                           |                                      |                          |                 |                            |                              | _                   |                    |                    | -     | -           |                       |                         | <del>-</del> |
|                                                                                                                                                                           |                                                                 |                           |                                      |                          |                 |                            |                              |                     |                    |                    |       |             |                       |                         |              |
| Y.                                                                                                                                                                        |                                                                 |                           |                                      |                          |                 |                            |                              |                     |                    |                    |       |             |                       |                         |              |
|                                                                                                                                                                           |                                                                 |                           |                                      |                          |                 |                            |                              |                     |                    |                    |       |             |                       |                         |              |
|                                                                                                                                                                           |                                                                 |                           |                                      |                          |                 |                            |                              |                     |                    |                    |       |             |                       |                         |              |
|                                                                                                                                                                           | 7                                                               |                           |                                      |                          |                 |                            |                              |                     |                    |                    |       |             |                       |                         |              |
|                                                                                                                                                                           | // //                                                           |                           |                                      |                          | _               |                            |                              |                     |                    |                    |       |             |                       |                         |              |
| Relinquished by (Signature)                                                                                                                                               |                                                                 |                           |                                      | Received by (Signature)  | (Signe          | fure)                      | ,                            |                     |                    |                    |       | Date:       | 01/1/10               | Time: 724               |              |
| Relinquished Kr. (Signeture)                                                                                                                                              | $\chi$                                                          |                           |                                      | Received by: (Signat     | Sy: (Signa      | 3                          | 3                            | 7                   | ,                  | B                  |       | Pate:       | 0////                 |                         | r            |
| Kelinquisped by (Signature)                                                                                                                                               |                                                                 |                           |                                      | Received by: (Signalure) | oy: (Signa      | (auce)                     |                              |                     |                    |                    |       | Date        | 66                    | Time:                   |              |
| Revised: 07/23/09                                                                                                                                                         |                                                                 |                           |                                      |                          |                 |                            |                              |                     |                    |                    |       | -           |                       |                         | 7            |

en de la companya de



WORK ORDER #: 10-05- 2 / 5 2

# Laboratories, Inc. SAMPLE RECEIPT FORM

Cooler O of O

| CLIENT: Kinder Morgan                                                                              | DATE: _                | 05/04/10                 |
|----------------------------------------------------------------------------------------------------|------------------------|--------------------------|
| TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not froze                             | en)                    |                          |
| Temperature°C + 0.5°C (CF) =°C                                                                     | ☐ Blank                | ☐ Sample                 |
| ☐ Sample(s) outside temperature criteria (PM/APM contacted by:).                                   |                        |                          |
| $\square$ Sample(s) outside temperature criteria but received on ice/chilled on same $\mathfrak c$ | day of sampli          | ng.                      |
| $\square$ Received at ambient temperature, placed on ice for transport by Co                       | ourier.                | _                        |
| Ambient Temperature: ☑ Air ☐ Filter ☐ Metals Only ☐ PCBs                                           | Only                   | Initial:                 |
|                                                                                                    |                        | ,                        |
| CUSTODY SEALS INTACT:                                                                              |                        | Q (                      |
| □ Cooler □ □ No (Not Intact) □ Not Present                                                         | •                      | Initial:                 |
| ☐ Sample ☐ ☐ ☐ No (Not Intact) ☐ Not Present                                                       |                        | Initial:                 |
| SAMPLE CONDITION:                                                                                  | Yes                    | No N/A                   |
| Chain-Of-Custody (COC) document(s) received with samples                                           | <b>.</b>               |                          |
| COC document(s) received complete                                                                  | <b></b>                |                          |
| $\square$ Collection date/time, matrix, and/or # of containers logged in based on sample labels    |                        |                          |
| ☐ No analysis requested.  ☐ Not relinquished.  ☐ No date/time relinquished.                        |                        |                          |
| Sampler's name indicated on COC                                                                    | . 🗹                    |                          |
| Sample container label(s) consistent with COC                                                      | ,                      |                          |
| Sample container(s) intact and good condition                                                      | _                      |                          |
| Proper containers and sufficient volume for analyses requested                                     |                        |                          |
| Analyses received within holding time                                                              | ,                      |                          |
| Proper preservation noted on COC or sample container                                               | . 🗆                    |                          |
| $\square$ Unpreserved vials received for Volatiles analysis                                        |                        |                          |
| Volatile analysis container(s) free of headspace                                                   | 🗆                      |                          |
| Tedlar bag(s) free of condensation                                                                 | <b>/</b>               |                          |
| CONTAINER TYPE:                                                                                    |                        |                          |
| Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCore                                                 | es <sup>®</sup> □Terra | Cores <sup>®</sup> □     |
| Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp                                                | □1AGB [                | □1AGB <b>na</b> ₂ □1AGBs |
| □500AGB □500AGJ □500AGJs □250AGB □250CGB                                                           | s □1PB [               | □500PB □500PB <b>na</b>  |
| □250PB                                                                                             |                        | □                        |
| Air: ☑Tedlar <sup>®</sup> □Summa <sup>®</sup> Other: □ Trip Blank Lot#:                            | Labeled/               | Checked by:              |
| Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E:      | Envelope <b>F</b>      | Reviewed by:             |
| Preservative: h: HCL n: HNO3 na2:Na2S2O3 na: NaOH p: H3PO4 s: H2SO4 znna: ZnAc2+NaOH               | f: Field-filtered      | Scanned by: ///          |





July 07, 2010

Alex Padilla
AMEC Geomatrix, Inc.
510 Superior Avenue
Suite 200
Newport Beach, CA 92663-3627

Subject: Calscience Work Order No.: 10-06-2242

Client Reference: SFPP - Norwalk Site

#### Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 6/29/2010 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc. Stephen Nowak

Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

#### **Case Narrative**

## Work Order # 10-06-2242 Modified EPA TO-14A or EPA TO-15

EPA Methods TO-14A and TO-15 describe gas chromatographic procedures that will allow for that separation of volatile organic compounds and their qualitative and quantitative analysis by mass spectrometry (GC/MS). A known volume of sample is directed from the container (Summa® canister or Tedlar™ bag) through a solid multi-module (glass beads, tenex, cryofocuser) concentrator. Following concentration, the VOCs are thermally desorbed onto a gas chromatographic column for separation and then detected on a mass selective detector.

#### Comparison of EPA TO-14A/TO-15 versus Calscience EPA TO-14A/TO-15 (Modified)

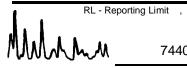
| Requirement                                                                                | EPA Method                                                                                          | Calscience Modifications                                                                                                       |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| BFB Acceptance Criteria                                                                    | CLP Protocol                                                                                        | SW846 Protocol                                                                                                                 |
| Initial Calibration                                                                        | Allowable % RSD for each Target Analyte <= 30%, two analytes allowed <= 40%                         | Allowable % RSD for each Target<br>Analyte <= 30%, 10% of analytes<br>allowed <= 40%                                           |
| Initial Calibration Verification<br>(ICV) -<br>Second Source Standard (LCS)                | Not Mentioned                                                                                       | Analytes contained in the LCS standard evaluated against historical control limits for the LCS                                 |
| Daily Calibration Verification (CCV)                                                       | Allowable % Difference for each<br>Target Analyte is <= 30%                                         | Full List Analysis: Allowable % Difference for each CCC analyte is <= 30%                                                      |
|                                                                                            |                                                                                                     | Target List Analysis: Allowable % Difference for each target analytes is <= 30%                                                |
| Daily Calibration Verification<br>(CCV) -<br>Internal Standard Area Response               | Allowable +/- 40%<br>(Range: 60% to 140%)                                                           | Allowable +/- 50%<br>(Range: 50% to 150%)                                                                                      |
| Method Blank, Laboratory Control<br>Sample and Sample - Internal<br>Standard Area Response | Allowable +/- 40% of the mean area response of most recent Initial Calibration (Range: 60% to 140%) | Allowable +/- 50% of the mean area response of the most recent Calibration Verification (Range: 50% to 150%)                   |
| Surrogates                                                                                 | Not Mentioned                                                                                       | 1,4-Bromoflurobenzene,<br>1,2-Dichloroethane-d4 and<br>Toluene-d8 - % Recoveries based<br>upon historical control limits +/-3S |










AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200

Newport Reach CA 92663-3627

Date Received: Work Order No: Preparation: Method:

06/29/10 10-06-2242 N/A

| Newport Bea       | ach, CA 92663-362          | 7         |               |         |             | Method:                | •           |                  |               |           | ASTM I                | D-1946    | 6        |
|-------------------|----------------------------|-----------|---------------|---------|-------------|------------------------|-------------|------------------|---------------|-----------|-----------------------|-----------|----------|
|                   |                            |           |               |         |             | Units:                 |             |                  |               |           |                       | %         | V        |
| Project: SFF      | PP - Norwalk Site          |           |               |         |             |                        |             |                  |               |           | Page                  | e 1 of 1  | <u>1</u> |
| Client Sample Nur | mber                       |           | Lab Sa<br>Num | •       |             | Date/Time<br>Collected | Matrix      | Instrument       | Date<br>Prepa |           | Date/Time<br>Analyzed | QC Bate   | ch ID    |
| INF-06-29         |                            |           | 10-06-        | 2242-   | 1-A         | 06/29/10<br>12:20      | Air         | GC 36            | N/A           |           | 06/29/10<br>00:00     | 100629    | L01      |
| Comment(s):       | -Results were evaluated to | the MDL,  | concentrat    | ions >: | = to the N  | MDL but < RL,          | if found, a | re qualified wit | th a "J" flag | g.        |                       |           |          |
| <u>Parameter</u>  | <u>Result</u>              | <u>RL</u> | <u>MDL</u>    | DF      | Qual        | <u>Parameter</u>       |             |                  | Result        | <u>RL</u> | <u>MDL</u>            | <u>DF</u> | Qual     |
| Methane           | ND                         | 0.500     | 0.0981        | 1       |             | Oxygen + Ar            | rgon        |                  | 21.3          | 0.500     | 0.370                 | 1         |          |
| Carbon Dioxide    | 0.403                      | 0.500     | 0.344         | 1       | J           |                        |             |                  |               |           |                       |           |          |
| Method Blank      |                            |           | 099-03        | 3-002-  | 1,077       | N/A                    | Air         | GC 36            | N/A           |           | 06/29/10<br>00:00     | 100629    | L01      |
| Comment(s):       | -Results were evaluated to | the MDL,  | concentrat    | ions >= | = to the N  | MDL but < RL,          | if found, a | re qualified wit | th a "J" fla  | g.        |                       |           |          |
| <u>Parameter</u>  | Result                     | <u>RL</u> | <u>MDL</u>    | DF      | <u>Qual</u> | <u>Parameter</u>       |             |                  | <u>Result</u> | <u>RL</u> | <u>MDL</u>            | <u>DF</u> | Qual     |
|                   |                            |           |               |         |             |                        |             |                  |               |           |                       |           |          |
| Methane           | ND                         | 0.500     | 0.0981        | 1       |             | Oxygen + Ar            | rgon        |                  | ND            | 0.500     | 0.370                 | 1         |          |



DF - Dilution Factor , Qual - Qualifiers





AMEC Geomatrix, Inc.

510 Superior Avenue

Work Order No:

10-06-2242

Suite 200

Preparation:

N/A

Newport Beach, CA 92663-3627

Method:

Date Received:

06/29/10

10-06-2242

N/A

Preparation:

N/A

Project: SFPP - Norwalk Site Page 1 of 1

| Floject. Si FF - Non      | waik Site            |                 |               |                        |                |                    |                  |                       | age i oi i  |
|---------------------------|----------------------|-----------------|---------------|------------------------|----------------|--------------------|------------------|-----------------------|-------------|
| Client Sample Number      |                      | Lab Sa<br>Numb  | •             | Date/Time<br>Collected | Matrix         | Instrument         | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
| INF-06-29                 |                      | 10-06-          | -2242-1-A     | 06/29/10<br>12:20      | Air            | GC 13              | N/A              | 06/29/10<br>15:25     | 100629L01   |
| Comment(s): -Results were | evaluated to the MDL | , concentration | s >= to the N | 1DL but < RL           | ., if found, a | are qualified with | n a "J" flag.    |                       |             |
| <u>Parameter</u>          | Result               | <u>RL</u>       | <u>MDL</u>    | <u>1</u>               | <u>DF</u>      | Qual               | <u>Units</u>     |                       |             |
| TPH as Gasoline           | 9.3                  | 1.5             | 0.17          | 1                      |                |                    | ppm (v/v)        |                       |             |
| Method Blank              |                      | 098-0           | 1-005-2,389   | N/A                    | Air            | GC 13              | N/A              | 06/29/10<br>08:44     | 100629L01   |
| Comment(s): -Results were | evaluated to the MDL | , concentration | s >= to the N | 1DL but < RL           | ., if found, a | are qualified with | n a "J" flag.    |                       |             |
| <u>Parameter</u>          | Result               | <u>RL</u>       | <u>MDL</u>    | <u>1</u>               | <u>DF</u>      | Qual               | <u>Units</u>     |                       |             |
| TPH as Gasoline           | ND                   | 1.5             | 0.17          | 1                      |                |                    | ppm (v/v)        |                       |             |

MMMM RL-Rep

DF - Dilution Factor , Qual - Qualifiers





AMEC Geomatrix, Inc. 510 Superior Avenue

Suite 200

Newport Beach, CA 92663-3627

Date Received: Work Order No: Preparation:

06/29/10 10-06-2242 N/A

Preparation:
Method:
Units:

EPA TO-15M ppb (v/v)

Project: SFPP - Norwalk Site

Page 1 of 2

| Client Sample Number             |             |                   |            | ab Sample<br>Number | Date/Time<br>Collected | Matrix        | Instrument | Date<br>Prepared | Date/T<br>Analyz  |           | QC Batch ID |
|----------------------------------|-------------|-------------------|------------|---------------------|------------------------|---------------|------------|------------------|-------------------|-----------|-------------|
| INF-06-29                        |             |                   | 10-06-     | 2242-1-A            | 06/29/10<br>12:20      | Air           | GC/MS K    | N/A              | 06/29<br>18:3     |           | 100629L01   |
| Comment(s): -The method has been | modified to | use Tedla         | ır bags i  | nstead of S         | umma Canisters         | 3.            |            |                  |                   |           |             |
| <u>Parameter</u>                 | Result      | <u>RL</u>         | <u>DF</u>  | <u>Qual</u>         | <u>Parameter</u>       |               |            | Result           | <u>RL</u>         | <u>DF</u> | <u>Qual</u> |
| Acetone                          | ND          | 120               | 2.5        |                     | t-1,2-Dichloroe        | thene         |            | ND               | 1.2               | 2.5       |             |
| Benzene                          | 74          | 1.2               | 2.5        |                     | t-1,3-Dichlorop        | ropene        |            | ND               | 2.5               | 2.5       |             |
| Benzyl Chloride                  | ND          | 3.8               | 2.5        |                     | Ethylbenzene           | •             |            | 13               | 1.2               | 2.5       |             |
| Bromodichloromethane             | ND          | 1.2               | 2.5        |                     | 4-Ethyltoluene         |               |            | 6.4              | 1.2               | 2.5       |             |
| Bromoform                        | ND          | 1.2               | 2.5        |                     | Hexachloro-1,3         | 3-Butadiene   |            | ND               | 3.8               | 2.5       |             |
| Bromomethane                     | ND          | 1.2               | 2.5        |                     | 2-Hexanone             |               |            | ND               | 3.8               | 2.5       |             |
| 2-Butanone                       | 71          | 3.8               | 2.5        |                     | Methyl-t-Butyl I       | Ether (MTB    | E)         | ND               | 5.0               | 2.5       |             |
| Carbon Disulfide                 | ND          | 25                | 2.5        |                     | Methylene Chlo         | oride         |            | ND               | 12                | 2.5       |             |
| Carbon Tetrachloride             | ND          | 1.2               | 2.5        |                     | 4-Methyl-2-Per         | ntanone       |            | ND               | 3.8               | 2.5       |             |
| Chlorobenzene                    | ND          | 1.2               | 2.5        |                     | o-Xylene               |               |            | 22               | 1.2               | 2.5       |             |
| Chloroethane                     | ND          | 1.2               | 2.5        |                     | p/m-Xylene             |               |            | 60               | 5.0               | 2.5       |             |
| Chloroform                       | ND          | 1.2               | 2.5        |                     | Styrene                |               |            | ND               | 3.8               | 2.5       |             |
| Chloromethane                    | ND          | 1.2               | 2.5        |                     | Tetrachloroeth         | ene           |            | ND               | 1.2               | 2.5       |             |
| Dibromochloromethane             | ND          | 1.2               | 2.5        |                     | Toluene                |               |            | 66               | 12                | 2.5       |             |
| Dichlorodifluoromethane          | ND          | 1.2               | 2.5        |                     | Trichloroethen         | е             |            | 12               | 1.2               | 2.5       |             |
| 1,1-Dichloroethane               | ND          | 1.2               | 2.5        |                     | Trichlorofluoro        | methane       |            | ND               | 2.5               | 2.5       |             |
| 1,1-Dichloroethene               | ND          | 1.2               | 2.5        |                     | 1,1,2-Trichloro        | -1,2,2-Triflu | ıoroethane | ND               | 3.8               | 2.5       |             |
| 1,2-Dibromoethane                | ND          | 1.2               | 2.5        |                     | 1,1,1-Trichloro        | ethane        |            | ND               | 1.2               | 2.5       |             |
| Dichlorotetrafluoroethane        | ND          | 5.0               | 2.5        |                     | 1,1,2-Trichloro        | ethane        |            | ND               | 1.2               | 2.5       |             |
| 1,2-Dichlorobenzene              | ND          | 1.2               | 2.5        |                     | 1,3,5-Trimethy         | lbenzene      |            | 7.8              | 1.2               | 2.5       |             |
| 1,2-Dichloroethane               | ND          | 1.2               | 2.5        |                     | 1,1,2,2-Tetrach        | nloroethane   |            | ND               | 2.5               | 2.5       |             |
| 1,2-Dichloropropane              | ND          | 1.2               | 2.5        |                     | 1,2,4-Trimethy         | lbenzene      |            | 18               | 3.8               | 2.5       |             |
| 1,3-Dichlorobenzene              | ND          | 1.2               | 2.5        |                     | 1,2,4-Trichloro        | benzene       |            | ND               | 5.0               | 2.5       |             |
| 1,4-Dichlorobenzene              | ND          | 1.2               | 2.5        |                     | Vinyl Acetate          |               |            | ND               | 5.0               | 2.5       |             |
| c-1,3-Dichloropropene            | ND          | 1.2               | 2.5        |                     | Vinyl Chloride         |               |            | ND               | 1.2               | 2.5       |             |
| c-1,2-Dichloroethene             | ND          | 1.2               | 2.5        |                     |                        |               |            |                  |                   |           |             |
| Surrogates:                      | REC (%)     | Control<br>Limits | <u>Qua</u> | <u>al</u>           | Surrogates:            |               |            | <u>REC (%)</u>   | Control<br>Limits | <u>C</u>  | <u>tual</u> |
| 1,4-Bromofluorobenzene           | 98          | 57-129            |            |                     | 1,2-Dichloroeth        | nane-d4       |            | 98               | 47-137            |           |             |
| Toluene-d8                       | 101         | 78-156            |            |                     |                        |               |            |                  |                   |           |             |





Units:



AMEC Geomatrix, Inc. 510 Superior Avenue

Suite 200

Newport Beach, CA 92663-3627

Date Received: Work Order No: Preparation: Method: 06/29/10 10-06-2242

ppb (v/v)

N/A EPA TO-15M

Page 2 of 2

Project: SFPP - Norwalk Site

| Client Sample Number      |         |                   |    | Lab Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument | Date<br>Prepared | Date/T<br>Analy   |           | QC Batch ID |
|---------------------------|---------|-------------------|----|----------------------|------------------------|-------------|------------|------------------|-------------------|-----------|-------------|
| Method Blank              |         |                   | 09 | 9-12-981-613         | N/A                    | Air         | GC/MS K    | N/A              | 06/29<br>13:4     |           | 100629L01   |
| <u>Parameter</u>          | Result  | <u>RL</u>         | DI | <u>Qual</u>          | <u>Parameter</u>       |             |            | Result           | <u>RL</u>         | <u>DF</u> | <u>Qual</u> |
| Acetone                   | ND      | 50                | 1  |                      | t-1,2-Dichloroe        | thene       |            | ND               | 0.50              | 1         |             |
| Benzene                   | ND      | 0.50              | 1  |                      | t-1,3-Dichlorop        | ropene      |            | ND               | 1.0               | 1         |             |
| Benzyl Chloride           | ND      | 1.5               | 1  |                      | Ethylbenzene           |             |            | ND               | 0.50              | 1         |             |
| Bromodichloromethane      | ND      | 0.50              | 1  |                      | 4-Ethyltoluene         |             |            | ND               | 0.50              | 1         |             |
| Bromoform                 | ND      | 0.50              | 1  |                      | Hexachloro-1,3         | 3-Butadiene |            | ND               | 1.5               | 1         |             |
| Bromomethane              | ND      | 0.50              | 1  |                      | 2-Hexanone             |             |            | ND               | 1.5               | 1         |             |
| 2-Butanone                | ND      | 1.5               | 1  |                      | Methyl-t-Butyl         | Ether (MTB  | E)         | ND               | 2.0               | 1         |             |
| Carbon Disulfide          | ND      | 10                | 1  |                      | Methylene Chl          |             |            | ND               | 5.0               | 1         |             |
| Carbon Tetrachloride      | ND      | 0.50              | 1  |                      | 4-Methyl-2-Per         | ntanone     |            | ND               | 1.5               | 1         |             |
| Chlorobenzene             | ND      | 0.50              | 1  |                      | o-Xylene               |             |            | ND               | 0.50              | 1         |             |
| Chloroethane              | ND      | 0.50              | 1  |                      | p/m-Xylene             |             |            | ND               | 2.0               | 1         |             |
| Chloroform                | ND      | 0.50              | 1  |                      | Styrene                |             |            | ND               | 1.5               | 1         |             |
| Chloromethane             | ND      | 0.50              | 1  |                      | Tetrachloroeth         | ene         |            | ND               | 0.50              | 1         |             |
| Dibromochloromethane      | ND      | 0.50              | 1  |                      | Toluene                |             |            | ND               | 5.0               | 1         |             |
| Dichlorodifluoromethane   | ND      | 0.50              | 1  |                      | Trichloroethen         | -           |            | ND               | 0.50              | 1         |             |
| 1,1-Dichloroethane        | ND      | 0.50              | 1  |                      | Trichlorofluoro        |             |            | ND               | 1.0               | 1         |             |
| 1,1-Dichloroethene        | ND      | 0.50              | 1  |                      | 1,1,2-Trichloro        |             | oroethane  | ND               | 1.5               | 1         |             |
| 1,2-Dibromoethane         | ND      | 0.50              | 1  |                      | 1,1,1-Trichloro        |             |            | ND               | 0.50              | 1         |             |
| Dichlorotetrafluoroethane | ND      | 2.0               | 1  |                      | 1,1,2-Trichloro        |             |            | ND               | 0.50              | 1         |             |
| 1,2-Dichlorobenzene       | ND      | 0.50              | 1  |                      | 1,3,5-Trimethy         |             |            | ND               | 0.50              | 1         |             |
| 1,2-Dichloroethane        | ND      | 0.50              | 1  |                      | 1,1,2,2-Tetracl        |             |            | ND               | 1.0               | 1         |             |
| 1,2-Dichloropropane       | ND      | 0.50              | 1  |                      | 1,2,4-Trimethy         |             |            | ND               | 1.5               | 1         |             |
| 1,3-Dichlorobenzene       | ND      | 0.50              | 1  |                      | 1,2,4-Trichloro        | benzene     |            | ND               | 2.0               | 1         |             |
| 1,4-Dichlorobenzene       | ND      | 0.50              | 1  |                      | Vinyl Acetate          |             |            | ND               | 2.0               | 1         |             |
| c-1,3-Dichloropropene     | ND      | 0.50              | 1  |                      | Vinyl Chloride         |             |            | ND               | 0.50              | 1         |             |
| c-1,2-Dichloroethene      | ND      | 0.50              | 1  |                      |                        |             |            |                  |                   |           |             |
| Surrogates:               | REC (%) | Control<br>Limits |    | Qual                 | Surrogates:            |             |            | REC (%)          | Control<br>Limits |           | <u>Qual</u> |
| 1,4-Bromofluorobenzene    | 100     | 57-129            |    |                      | 1,2-Dichloroeth        | nane-d4     |            | 107              | 47-137            |           |             |
| Toluene-d8                | 103     | 78-156            |    |                      |                        |             |            |                  |                   |           |             |





# **Quality Control - Duplicate**



AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200

Newport Beach, CA 92663-3627

Date Received: Work Order No: Preparation: Method: 06/29/10 10-06-2242 N/A EPA TO-3M

Project: SFPP - Norwalk Site

| Quality Control Sample ID | Matrix      | Instrument | Date<br>Prepared: | Date<br>Analyzed: | Duplicate Batch<br>Number |
|---------------------------|-------------|------------|-------------------|-------------------|---------------------------|
| INF-06-29                 | Air         | GC 13      | N/A               | 06/29/10          | 100629D01                 |
| _                         |             |            |                   | DDD CI            | Over life and             |
| <u>Parameter</u>          | Sample Conc | DUP Conc   | <u>RPD</u>        | RPD CL            | <u>Qualifiers</u>         |
| TPH as Gasoline           | 9.3         | 9.1        | 2                 | 0-20              |                           |

RPD - Rela





AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Newport Beach, CA 92663-3627 Date Received: Work Order No: Preparation: Method:

10-06-2242 N/A ASTM D-1946

N/A

Project: SFPP - Norwalk Site

| Quality Control Sample ID | Matrix | Instrument | Date<br>Prepared       | Date<br>Analyzed | d          | LCS/LCSD Batcl<br>Number | n          |
|---------------------------|--------|------------|------------------------|------------------|------------|--------------------------|------------|
| 099-03-002-1,077          | Air    | GC 36      | N/A                    | 06/29/10         |            | 100629L01                |            |
|                           |        |            |                        |                  |            |                          |            |
| <u>Parameter</u>          | LCS %  | REC LCSD   | <u>%REC</u> <u>%</u> I | REC CL           | <u>RPD</u> | RPD CL                   | Qualifiers |
| Carbon Dioxide            | 93     | 92         | ;                      | 80-120           | 1          | 0-30                     |            |
| Oxygen + Argon            | 87     | 87         | :                      | 80-120           | 1          | 0-30                     |            |
| Nitrogen                  | 88     | 87         | :                      | 80-120           | 1          | 0-30                     |            |

RPD - Relative Percent Difference , CL - Control Limit

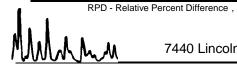




AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Newport Beach, CA 92663-3627 Date Received: Work Order No: Preparation: Method: N/A 10-06-2242 N/A

EPA TO-15M

Project: SFPP - Norwalk Site


| Quality Control Sample ID | Matrix   | Instrument | Date<br>Prepared | Da<br>Anal | ate<br>yzed | LCS/LCSD I<br>Numbe |            |
|---------------------------|----------|------------|------------------|------------|-------------|---------------------|------------|
| 099-12-981-613            | Air      | GC/MS K    | N/A              | 06/29      | /10         | 100629L             | 01         |
| <u>Parameter</u>          | LCS %REC | LCSD %REC  | %REC CL          | ME CL      | RPD         | RPD CL              | Qualifiers |
| Benzene                   | 82       | 86         | 60-156           | 44-172     | 5           | 0-40                |            |
| Carbon Tetrachloride      | 86       | 91         | 64-154           | 49-169     | 6           | 0-32                |            |
| 1,2-Dibromoethane         | 87       | 91         | 54-144           | 39-159     | 4           | 0-36                |            |
| 1,2-Dichlorobenzene       | 84       | 86         | 34-160           | 13-181     | 2           | 0-47                |            |
| 1,2-Dichloroethane        | 90       | 94         | 69-153           | 55-167     | 4           | 0-30                |            |
| 1,2-Dichloropropane       | 92       | 95         | 67-157           | 52-172     | 4           | 0-35                |            |
| 1,4-Dichlorobenzene       | 83       | 85         | 36-156           | 16-176     | 2           | 0-47                |            |
| c-1,3-Dichloropropene     | 102      | 107        | 61-157           | 45-173     | 5           | 0-35                |            |
| Ethylbenzene              | 89       | 92         | 52-154           | 35-171     | 3           | 0-38                |            |
| o-Xylene                  | 88       | 91         | 52-148           | 36-164     | 3           | 0-38                |            |
| p/m-Xylene                | 88       | 91         | 42-156           | 23-175     | 3           | 0-41                |            |
| Tetrachloroethene         | 86       | 91         | 56-152           | 40-168     | 5           | 0-40                |            |
| Toluene                   | 84       | 88         | 56-146           | 41-161     | 5           | 0-43                |            |
| Trichloroethene           | 84       | 89         | 63-159           | 47-175     | 5           | 0-34                |            |
| 1,1,2-Trichloroethane     | 91       | 95         | 65-149           | 51-163     | 5           | 0-37                |            |
| Vinyl Chloride            | 93       | 100        | 45-177           | 23-199     | 8           | 0-36                |            |

Total number of LCS compounds: 16

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass





# **Glossary of Terms and Qualifiers**



Work Order Number: 10-06-2242

| Qualifier | Definition                                                                                                                                                                                                                                             |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| *         | See applicable analysis comment.                                                                                                                                                                                                                       |
| <         | Less than the indicated value.                                                                                                                                                                                                                         |
| >         | Greater than the indicated value.                                                                                                                                                                                                                      |
| 1         | Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.                                                                                               |
| 2         | Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.                             |
| 3         | Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.    |
| 4         | The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.                                                                              |
| 5         | The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification. |
| В         | Analyte was present in the associated method blank.                                                                                                                                                                                                    |
| Е         | Concentration exceeds the calibration range.                                                                                                                                                                                                           |
| J         | Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.                                                                                                        |
| ME        | LCS Recovery Percentage is within LCS ME Control Limit range.                                                                                                                                                                                          |
| ND        | Parameter not detected at the indicated reporting limit.                                                                                                                                                                                               |
| Q         | Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.                                                                          |
| X         | % Recovery and/or RPD out-of-range.                                                                                                                                                                                                                    |
| Z         | Analyte presence was not confirmed by second column or GC/MS analysis.                                                                                                                                                                                 |
|           | Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.                                                                                                                                 |

| J                  | glecionco                                     | 7440 LINCOLN WAY                                                                         |                  |                                      |                          |                 |              |               |                             |          |      | 0 '          | HAIN  | 10 F              | CUSTO          | CHAIN OF CUSTODY RECORD |                                              |
|--------------------|-----------------------------------------------|------------------------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------|-----------------|--------------|---------------|-----------------------------|----------|------|--------------|-------|-------------------|----------------|-------------------------|----------------------------------------------|
| 4                  | nvironmental                                  | <b>GARDEN GROVE, CA 92841-1432</b>                                                       | 41-1432          |                                      |                          |                 |              |               |                             |          |      | _            | DATE: |                   |                |                         |                                              |
| •                  | yaboratorles, Inc.                            | TEL: (714) 895-5494 . FAX:                                                               | : (714) 894-7501 | 7501                                 |                          |                 |              |               |                             |          |      | Δ.           | PAGE: |                   | 1<br>OF        | -                       |                                              |
| Kind               | ABORATORY CLIENT:<br>Inder Morgan Energy F    | Laboratory c⊔ent:<br>Kinder Morgan Energy Partners. Attn: Steve Definbo⊔gb               | efinbound        | ع                                    |                          | ٦               | DENT PR      | JECT NA       | CLIENT PROJECT NAME / NUMBE | ά        |      |              |       |                   | P.O. NO.:      |                         |                                              |
| ADDRI<br>1100      | ADDRESS: Country Road                         | oad                                                                                      |                  |                                      |                          | <u> </u>        | SFPP - No.   | - Non         | SFPP - Norwalk Site         | 9        |      |              |       |                   | ONOTE NO       |                         | Ţ                                            |
| CITY:              | OITY:                                         |                                                                                          |                  |                                      |                          |                 | James Dye    | Dye           | W.                          | 1        |      |              |       |                   | I AR LISE ONLY | <u>&gt;</u>             | 1.                                           |
| <u> </u>           | 714-560-4802                                  | FAX: 714-560-4601                                                                        | _                | E-MAIL<br>lames dye@kindermorgan.com | ndermorgan.c             | т               | 14           | 1/1           | 16                          | k        | \    |              |       |                   | -96            | 224                     | る                                            |
|                    | TURNAROUND TIME  SAME DAY 24 HR 48HR          | 48HR   72 HR                                                                             | 5 DAYS           | Syt                                  | 10 DAYS                  | 1               |              |               |                             |          | ZEQU | REQUESTED    | D AN  | ANALYSIS          | S              |                         | <u>.                                    </u> |
| SPECI              | AL REQUIREMENTS (ADDITIONAL REQUIREMENTS)     | COSTS MAY APPLY)                                                                         |                  | _                                    |                          |                 |              |               |                             |          |      |              |       |                   |                |                         | ·                                            |
| SPECI<br>Dig "     | Report to A. Padilla at Direct Bill KMEP/SFPP | Report to A. Padilla at Geomatrix, cc: KMEP Direct Bill KMEP/SFPP - Steve Defibaugh-ref. | f. AFE# 81195    | 1195                                 | 1                        |                 |              | )2, CH4)      |                             |          |      | <del> </del> |       |                   |                |                         |                                              |
| י                  | iiags iequiieu/ost                            | o nags required/ose lowest possible detection innt - an methods.                         |                  |                                      | mods.                    |                 |              | ეე 'uo        |                             |          |      |              |       |                   |                |                         |                                              |
|                    |                                               |                                                                                          | SAMPLING         | LING                                 | ž 0                      | NO. OF<br>CONT. |              | ρ1Α\          |                             |          |      |              |       |                   |                |                         |                                              |
| LAB<br>USE<br>ONLY | SAMPLEID                                      | LOCATION/<br>DESCRIPTION                                                                 | DATE             | TIME                                 | MAT.                     | êl-OT           | (g-H9T) E-OT | SO) 8461-MT2A |                             |          |      |              |       |                   | Š              | Comments                |                                              |
| 4                  | INF. 06-29                                    | Influent Vapor to SVE                                                                    | 01.38.10         | 1220                                 | Air                      | ×               | ×            | ×             |                             |          |      | _            |       | Mont              | Monthly sample |                         |                                              |
|                    |                                               |                                                                                          |                  |                                      |                          |                 |              |               |                             |          |      |              |       |                   |                |                         |                                              |
|                    |                                               |                                                                                          |                  |                                      |                          |                 |              |               |                             |          |      |              |       |                   |                |                         |                                              |
|                    |                                               |                                                                                          |                  |                                      |                          |                 |              |               |                             |          |      |              |       |                   |                |                         |                                              |
|                    |                                               |                                                                                          |                  |                                      |                          |                 |              |               |                             |          |      |              |       |                   | ,              |                         |                                              |
|                    |                                               |                                                                                          |                  |                                      |                          |                 |              |               |                             |          |      |              |       |                   |                |                         |                                              |
|                    |                                               |                                                                                          |                  |                                      |                          |                 |              |               |                             |          |      |              |       |                   |                |                         |                                              |
| 2.                 |                                               |                                                                                          |                  |                                      |                          |                 |              |               |                             |          |      |              |       |                   |                |                         |                                              |
|                    |                                               |                                                                                          |                  |                                      |                          |                 |              |               |                             |          |      | _            |       |                   |                |                         |                                              |
| Reling             | Relinquished by: (Signature)                  |                                                                                          |                  |                                      | Received by: (Signature) | oy: (Sigr       | atrure       | 81111         | 72                          | <b>4</b> | 7    |              |       | Date              | 129/1          | CD: 5 } 0.              | Τ                                            |
| Relinq             | Relingulished by: (Signature)                 |                                                                                          |                  |                                      | Received by: (Signature) | oy: (Sign       | ature)       |               |                             |          |      |              |       | Date              | <b>X</b>       | Time:                   |                                              |
| Réjind             | Réjinquished by: (Signature)                  |                                                                                          |                  |                                      | Received by: (Signature) | oy: (Sign       | ature)       |               |                             |          |      |              |       | Date              | as             | Time:                   |                                              |
| Revis              | Revised: 07/23/09                             |                                                                                          |                  |                                      |                          |                 |              |               |                             |          |      |              |       | $\left\{ \right.$ |                | -                       | 7                                            |



WORK ORDER #: 10-06-22 4 2

# SAMPLE RECEIPT FORM

Cooler  $\underline{\hspace{0.1cm}^{\hspace{0.1cm} O}}$  of  $\underline{\hspace{0.1cm}^{\hspace{0.1cm} O}}$ 

| TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C - 6.0 °C, not frozen)  Temperature °C + 0.5 °C (CF) = °C   Blank   Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CLIENT: KMEP DA                                                                                    | ATE: _         | 06/29                 | /10            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------|-----------------------|----------------|
| Sample(s) outside temperature criteria (PM/APM contacted by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not frozen)                           |                |                       |                |
| Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling.   Received at ambient temperature, placed on ice for transport by Courier.   Ambient Temperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Temperature°C + 0.5°C (CF) =°C                                                                     | Blank          | ☐ Sample              | €              |
| Received at ambient temperature, placed on ice for transport by Courier.  Ambient Temperature: Air   Filter   Metals Only   PCBs Only   Initial:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ☐ Sample(s) outside temperature criteria (PM/APM contacted by:).                                   |                |                       |                |
| Ambient Temperature: Air   Filter   Metals Only   PCBs Only   Initial:   CUSTODY SEALS INTACT:   No (Not Intact)   Not Present   N/A   Initial:   COOLEGE   Not Present   N/A   Initial:   COOLEGE   Not Present   N/A   Initial:   COOLEGE   Not Coolege   Not received with samples   Not Coolege   Not relinquished   Not date/time relinquished.   Not analysis requested   Not relinquished   Not date/time relinquished.   Sampler's name indicated on COC   Sample container label(s) consistent with COC   Sample container and sufficient volume for analyses requested   Not relinquished   Not date/time relinquished   Not analyses requested   Not relinquished   Not date/time relinquished   Not analysis requested   Not relinquished   Not date/time relinquished   Not analysis requested   Not relinquished   Not date/time relinquished   Not analysis container (s) intact and good condition   Proper containers and sufficient volume for analyses requested   Proper containers and sufficient volume for analyses requested   Proper preservation noted on COC or sample container   Proper preservation noted on | $\square$ Sample(s) outside temperature criteria but received on ice/chilled on same day c         | of samplir     | ng.                   |                |
| CUSTODY SEALS INTACT:    Cooler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ☐ Received at ambient temperature, placed on ice for transport by Couri                            | er.            |                       |                |
| □ Cooler □ □ □ □ No (Not Intact) □ Not Present □ N/A Initial:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ambient Temperature: ☑ Air ☐ Filter ☐ Metals Only ☐ PCBs Only                                      | У              | Initial:              | PC             |
| Cooler   No (Not Intact)   Not Present   N/A Initial:   N/A Initial: Initial: Initial: Initial:   N/A Initial: Initial: Initial: Initial: Initial: Initial  |                                                                                                    | ·····          |                       |                |
| Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                    | -/N/A          |                       | B.1 -          |
| SAMPLE CONDITION:  Yes No N/A Chain-Of-Custody (COC) document(s) received with samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                                                                                           | ⊠ N/A          |                       | ~              |
| Chain-Of-Custody (COC) document(s) received with samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | □ Sample □ □ No (Not Intact) → Not Present                                                         |                | Initial:              | 80             |
| COC document(s) received complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAMPLE CONDITION: Yes                                                                              | 3              | No                    | N/A            |
| COC document(s) received complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chain-Of-Custody (COC) document(s) received with samples                                           | /              |                       |                |
| Collection date/time, matrix, and/or # of containers logged in based on sample labels.  No analysis requested. Not relinquished. No date/time relinquished.  Sampler's name indicated on COC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                    |                |                       |                |
| Sampler's name indicated on COC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                    |                |                       |                |
| Sample container label(s) consistent with COC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.                          |                |                       |                |
| Sample container label(s) consistent with COC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                    | /              |                       |                |
| Sample container(s) intact and good condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                    | ,              |                       |                |
| Proper containers and sufficient volume for analyses requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    |                |                       |                |
| Analyses received within holding time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                    | /              |                       |                |
| Proper preservation noted on COC or sample container                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                    |                |                       |                |
| Unpreserved vials received for Volatiles analysis  Volatile analysis container(s) free of headspace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pH / Residual Chlorine / Dissolved Sulfide received within 24 hours                                |                |                       |                |
| Volatile analysis container(s) free of headspace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Proper preservation noted on COC or sample container                                               |                |                       |                |
| Tedlar bag(s) free of condensation.  CONTAINER TYPE:  Solid:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ☐ Unpreserved vials received for Volatiles analysis                                                |                |                       | •              |
| CONTAINER TYPE:  Solid:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Volatile analysis container(s) free of headspace                                                   |                |                       | otag           |
| Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB □1AGBna₂ □1AGBs □500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □500PB □500PBna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    |                |                       |                |
| □500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □500PB □500PB <b>na</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores®                                               | □TerraC        | Cores <sup>®</sup> □_ |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □                                              | 1AGB 🗆         | ]1AGB <b>na₂</b> [    | ]1AGBs         |
| □250PB □250PBn □125PB □125PBznna □100PJ □100PJna <sub>2</sub> □ □ □ □ □ □ □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | □500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □                                                | ]1PB [         | ⊒500PB □50            | 00P <b>Bna</b> |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | □250PB                                                                                             | □              |                       |                |
| Air: Tedlar® Summa® Other: Trip Blank Lot#: Labeled/Checked by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Air: ☑Tedlar <sup>®</sup> □Summa <sup>®</sup> Other: □ Trip Blank Lot#: L                          | .abeled/C      | hecked by:            | \$             |
| Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope Reviewed by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Enve | elope <b>R</b> | eviewed by:           | <u> 60</u>     |